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PREFACE

This publication of proceedings presents workshop papers in the

order of topics on the agenda of the symposium. Introductory and/or

summarizing comments by each panel chairman are given at the begin-

nln8 of the collection of papers from the corresponding panel. Those

brief remarks by workshop participants which were submitted in written

form are grouped together for each panel and presented after the col-

lectlon of associated papers. The many comments end questions not

exhibited here are covered, to a large extent, by the reviews given

by panel chairmen.

Host of the formal presentations at the symposium are represented

In this publication of the proceedings either by self-contalned papers

or by abstracts. Some of the major contributions to the general sessions

opening and closing the workshop are not represented here, but involved

msterlal which may be found in papers included under the specialized

panels.

Elihu Boldt

Goddard Space Flight Center

Yoji Kondo

Johnson Space Center
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INTRODUCTION

Yoji Kondo
NASA Johnson Space Center

Houston, Texas 77058 USA

This symposium is an outgrowth of a coordinated campaign to observe

X-ray binaries sponsored by the IAU (International Astronomical Union)
Commission 42 (Close Binary Stars) and Commission 44 (Astronomical

Observations from Outside the Terrestrial Atmosphere).

A brief history of the campaign is perhaps in order here. At the IAU
General Assembly in Sydney in 1973, the members of the Commission 42

(President, Dr. T. Herczeg) discussed prospective coordinated campaigns
for the next triennial period. I suggested a coordinated campaign on

X-ray binaries in order to orchestrate the efforts by X-ray experimenters,

ground-based observers and theorists. The suggestion was made in part
from the realization that many ground-observers were not well acquainted

with the current or planned X-ray experiments and that communication

_muny v_fluu_ _i_nii_i_ ,,,iyill b_ i,,,p_uwd by il_vil,y _U,N_UE,_ d_iy,,_i_d
aS a coordinator. There is a Committee for Coordinated Observing
Programs in Commission 42, which is headed by Dr. Kjeld Gyldenkerne, and

I hoped that he would find someone for the task. Well, _ was selected
for the job before I knew what happened. After an exchange of several

letters between Kjeld and myself, and with the benefit of his helpful
advice, the Coordinated Campaign for Observation of X-ray Binaries went

into operation in January of 1974. Prior to announcement of the

campaign, the President of Commission 44, Dr. A. D. Code, was also
consulted regarding the coordinated campaign and we received an
enthusiastic endorsement from him.

The main objectives of the campaign have been: (a) dissemination of

information on satellite X-ray experiments and ground-based programs;
(b) designation of specific campaign dates for observation of specific

objects; and (c) transmission of suggestions and recommendations from

campaign participants. These functions have been performed through

Campaign Circulars and Special Bulletins; the most recent circular,
No. 16, was issued a few weeks ago. Objective (b) is the most difficult

task to perform. This is mainly because satellite observing plans are

usually made fairly close to the actual time of observation and we
cannot provide a sufficient advance notice to the ground-observers.

Major observatories tend to schedule their telescope time some six
months in advance making it very difficult for astronomers to plan

simultaneous observations with satellites. As a result, only a few

designated campaign dates were announced. We have merely endeavored

to announce X-ray satellite observing schedules in a timely fashion
to aid the campaign participants.
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Asthe campaignprogressed,I beganto realize that it wouldperhaps
bea goodideato provideanopportunityfor the campaignparticipants
to gatherat oneplacein a workshopanddirectly comparenotes. In
addition, sucha meetingmighthelpdevelopa clearerpicture for some
X-raybinaries. I discussedthis ideawith severalscientists, among
themDr. Elihu Boldtof GoddardSpaceFlight Center. Wepursued
the matterandit wasagreedthat a goodplaceto hostsucha meeting
wouldbeGSFC.In selectingthe date for the workshop,weconsidered
the launchdatesof the 0S0-8andSAS-3aswell as the fact that the
Ariel 5 andANSwouldhavebeenin operationfor abouta yearbythen.
As it hasworkedout, wehavethe uniqueopportunityof holdingthis
conferencewhile five X-raysatellites are in operation_

I hopeandtrust that the nextthreedayswill proveto beboth
productiveandinformative. Welookforwardto furtheringour
understandingof thesefascinatingX-raybinaries if only bya modest
amount.Wealso hopeto havedevelopedbythe endof thosethree
daysa moreeffective wayto wageour coordinatedcampaignin the
future. It is also hopedthat this workshopwill provideanopportunity
for observers,experimentersandtheorists to establishdirect and
personalcontactsamongthemselvesin furtheringtheir research.

Finally, I wishto expressmysincerethanksto Dr. Elihu Boldtand
othermembersof the Scientific andLocalOrganizingCommitteesfor
their valuablecontributionsin makingthis symposiuma reality.
Dr. Boldt, in particular, dedicatedmuchof his valuableresearch
timetowardorganizationof this meeting. Mrs.S. Shraderandother
workersat GSFCalso providedvaluedassistance.
20October1975
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Copernicus Observations of a N_mber of

Galactic X-ray Sources

J. L. Culhane, K. 0. Mason, P. W. Sanford,

N. E. White.

Mullard Space Science Laboratory,

Depar_nent of Physics and Astronomy,

University College London.

INTRODUCTION

The Copernicus satellite was launched on 21 August 1972. The main
experiment on board is the University'of Princeton UVtelescopeo In
addition a cosmic X-ray package of somewhat modest aperture was provided

by the Mullard Space Science Laboratory (MSSL) of University College

London. Following a brief description of the instrument, a list of

galactic sources observed during the year up to October 1975

is presented. A good deal of the data from these sources has been
analysed and much of it will be presented by other speakers at this

symposi_n. Some observations, which will not be discussed in other

sessions, will be described in this paper.

Since, in addition to work done by members of the MSSL group, a number

of the papers presented at this symposium represent the work of guest

investigators, it is important to point out that a continuing guest
investigator programme is in progress. Proposals for guest observing

time have come from people in many different branches of astronomy and

time can still be made available in the course of next year.

Although the X-ray detection aperture is small, as will become clear
from the next section, the ability to point the satellite for long
periods of time with high accuracy makes Copernicus an ideal vehicle
for the study of variable sources. 0bservingprogrammes are planned
at MSSL two to three months in advance of carrying out the observations.
The experiment is operated from the Goddard control centre by a joint
team from MSSL and the Appleton Laboratory of the UK Science Research
Council.

2 o INST_TION

The complete MSSL package is illustrated schematically in Figure 1
_nile the instrument parameters are s_mnarised in table 1. The t_¢o

grazing incidence X-ray collectors covering the energy range 0.5 to
4.0 keV are unavailable due to the failure, after one year in orbit,

of a background shutter. Although the channeltron used in the focal
plane of the third reflector suffers from a high background due to a
light leak, it is possible to use it for certain observations, (see



for exampleMargonet al (1974)Henry et al (1975)). The collimated

proportional counter detector continues to operate reliably and is at

present the main X-ray instr_nent avialable inthe package. The usual
data integration time is 62.5 sec but this can be reduced to between

1 and 16 sec using the computer on board the spacecraft. The particle
background rate is variable but averages about 50 counts per minute.

The spacecraft pointing precision is better than one arc second while
the jitter is less than a fraction of an arc second when the system
is under control of the Princeton fine error sensor. _henunder gyro

control, the spacecraft axis drifts at a rate of 2 arc sec. per hour
but the star sensors may be used at any time to update the gyros.

3. OBSERVATIONS OF GALACTIC X-RAY SOURCES - GEN]_ SU1WE_

_le galactic X-ray sources which have been observed in the past year are
listed in table II under two headings, galactic variable sources and
targets of opportunity. In the first category, Cygnus X-1 has been

observed extensively byPaul Murdin, a Copernicus guest investigator,

together with a number of MSSL co-workers. X-ray and optical
data have been obtained by Sergio Ilovaisky and his colleagues, for the
Cygnus X-2 source. Results of both Copernicus and Ariel-5 observations

of Cygnus X-3 have been analysed by KeiZhMason and his co-workers.

The work in these three areas will be presented elsewhere in these proceed-
ingso While Ian Tuohywill report on Ariel-5 observations of Centaurus
X-3, studies of Eae accretion wake associated with this source using

Copernicus data have already been published (_ohy and Cruise, (1975)).
Similar studies of the source 3U 0900-40 are reported elsewhere in _hese

proceedings by Phil Charles while results obtained for 3U 1700-37 are

described by Keith Mason. The sources at the bottom of the first part
of the list [3U 1728-16, 3U 1911-17 and 3U 1813-14) have also been observed

and analysis of these data is continuing. I will discuss SC0 X-I

and 3U 0352+30 in greater detail below and will also mention briefly
some recent observations of Her X-I.

In the category of targets of opportunity, the transient source in
Cen%aurus (A 1118-61) was observed by Copernicus° It was suggested by
Fabian (1975),%hat the transient X-ray emission was 'turned on' at a
particular phase of the Mira variable RS Centauri. Copernicus observations

have showed that X-ray emission did not recur at the appropriate phase of
RS Cen and so the association of this star with A 1118-61 can probably be
ruled out. The transient X-ray source (A 1742-28) in the galactic centre
has been studied with Copernicus by Graziella Branduardi and her colleagues
and I will present some preliminary results of their work later. The
X-ray source 3U 1908+00 (Aquilla X-I) was examined by Copernicus and,

prior to June 1975, was found to have strenghh about 2_ of that of %he
Crab Nebula, a value which is six times below the fluxreported in %he

3U catalogue (Giacconi et al (1974)). During June 1975 the source
increased its X-ray output to a level comparable with the Crab Nebula.
Studies of this source are continuing. Finally it was possible at very
short notice to arrange for Copernicus X-ray observations of Nova Cygni
1975, an optical novawhich was discovered in late August. The X-ray

observations set an upper limit of approximately 10-10 ergs cm-2 sec-1
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(or 6 Uhuru counts) on T2ae flax in the 2.5 - Y.5 keV band at the time

of optical m_im_ (Sanford et a10975)).

OBSERVATIONS OF GALACTIC X-RAY SOURCES - SPECIFIC OBJECTS

While most of the sources mentioned in the previous sections will be

discussed in greater detail by Copernicus guest investigators and MSSL

group members in the panel sessions, I would like to present recent results
for several objects which will not be reported elsewhere in these proceedings.

a) SC0 X-1

A n_ber of Copernicus observations of this source have been carried
out in the period October 1972 to June 1975 and a de%ailed account of
T_is work isin preparation (White et al (1975a))° Broadly speaking the
results reported by earlier observers are confirmed in that the X-ray
flax exhibits _zo states, one active and one quiescent. Data represent-
ative of an active phase of the source are shown in Figure 2. The observ-
ations were made on 10 July 1974. X-ray intensit,,f in counts per 62.5 sec
and spectral slope parameter are plotted against time. The spectral para-
meter is obtained in the following manner. For the. purpose of fitting an

expression to the data to represent the source photon spectrum we have
ass_ed that the emission is by the free-free process from a hot spherical
plasma cloud of radius r_ and having uniform temperature and electron
density T(°K) and n(cm- ._--The source spectrum may then be represented
by

I(_.) = A exp (--_-_) g (EJ) (1)

keV keV -1 cm-2 sec -1

where the free-free Gaunt factor is approximated by

g {,.)
and the normalising constant is given by

A = 3.10 -15 n 2 r 3 (3)

3d--T

Here E is photon energy in keV and d is the distance to the source in
Cm While values of T obtained from the data are limited in their

usefulness because of the simplicity of the above model, and •cannot

be regarded as a true measure of the plasma temperature, it is of
interest to examine the variability of the parameter T under both active

and quiet conditions. Values of T and A are obtained from the data by
fitting equation (1) using a spectral fitting programme which takes account
of detector resolution, quanhzn efficiency and photon escape effects.

As may be seen in Figure 2, the active state involves the occurrence of

bursts of typically 5 to 15 minutes duration and with X-ray flux enhancements
of up to a factor two. The temperature parameter varied from a baseline



value of about 5.5 keV up to 20 keV or more° The most intense bursts

have the longest durations. During active states, in the i_tervals between

flares, the temperature value remains at around 5.5 keV and the flux

ahrays returns to a minimum value of 4000 Copernicus counts per minute

or 8000 - 9000 Uhuru counts per sec. This minimum value appears

stable to within 3_ over periods of years at a confidence level of 90_o

0n one occasion (April, 5th_ 1973) a longer lasting flare occurred during

_¢nich the flux increased by about 25_ over a period of approximately one

hour°

Data acquired during a typical quiescent period are shown in Figure 3.

The X-ray intensity varies by around 20_ while the value of the temperai_Ire

parameter is about 7.5 keV during these intervals. This temperahlre

value is greater during quiescent states than the minimum value

reached during the non-flaring portions of the active states.

For the active phase data presented in Figure 2, temperature _alues

have been derived for each 62.5 sec. data sample. These values have

been plotted against X-ray counting rates in Figure 4a for the active

phase and in Figure 4b for data taken during quiescent phase. In Figure 4c,

temperatures have been determined for source intensity intervals of 500

counts. Data from both active and quiescent periods are plotted in

this way. The slopes of both plots are similar but it

is clear that, for a given source intensity_ the quiescent value of the

temperature parameter is somewhat higher than the active phase value.

Finally the normalising parameter A which represents volume emission

measure (see equation (3_ is plotted against temperature in Figure 4d.

It is apparent that there is a difference in either plasma density or

volume between the two states at a given temperature in agreement

with the work of Kitamura et al (1971).

The long term behaviour of the source may therefore be sLm_narised as

follows.

During the quiescent phases the flux from SC0 X-I varies by up to

50_, which may be correlated with an associated temperature variabil_-y

from 5.5 to 8.0 keV. The transition into its active state is heralded

by a decline in flux to a minimum level, with a reduction in temperature

to 5.5 keV. From this level it then flares with temperatures ranging

from 5.5 keV. t_ above 20 keV that are well correlated with the intensity

level. Between flares the flux always returns to the same minimum level.

When the active phase terminates the source resumes its quiescent var-

iability and moves away from the base level flux and temperature.

The s_ability of the underl3ring flux introduces the problem of how

this situation can arise in such an otherwise variable source.

The emission may include two components with one component emitting constantly

with a temperature of 5.5 keV while a second, more active component, is

responsible for the variability seen in both quiescent and active phses.

Our data are consistent with a single component spectrum ; however the

energy range and the limited number of channels of the detectors do not

enable us to resolve a second component. Continuous monitoring over a

large energy range will clarify this point.



At present the models for the SC0 X-I system can be divided into two
groups ; Close Binary Systems (e.g. Basko and Sunyaev, 1973) and

Rotating Degenerate Stars (e.g. Davidson et al, 1971). The 0°7874

day optical periodicity seen in both the light curve (Gottlieb et al
(1975) and the radial velocity observation of Cowley and Crampton (1975)),

makes it almost certain that the system is a binary. Here the energy
source for the X-ray emission is mass accretion from a normal star onto

a compact secondary. However among the other X-ray sources known to be

contained in binary systems, none exhibit the stable X-ray base level

of SCO X-I. Because the initiation of a SC0 X-I binary system must be
of the order of 90 ° the situation is somewhat unique in that we are

observing disc or radial accretion 'end on'. The properties reported

for this source could well result from this, and may give an indication of
which accretion mechanism is operating.

b) 3U 0352 + 30

A considerable ammount of Copernicus observing time has been devoted to

the study of this source. Positional data from the work of Hawkins,
Mason and Sanford (1975) are given in Figure 5. The area of overlap of

the Copernicus and Uhuru position boxes is approximately 7 square arc min.

Two candidate objects are shown in this region of overlap, one of which

is the star X Persei, a peculiar 6th magnitude Be object.

The X-ray source and the star have been studied simultaneously by the

Princeton [W telescope and the MSSL X-ray detectors on Copernicus in

order to estimate the column density of interstellar material in front
of both the star and the X-ray source (Mason et al (1975)). Table 111
su_narises the results of observations _th the Princeton instrument.

Values of atomic,molecular and total Hydrogen column densities are pres-

ented in the table. The high value of the molecular hydrogen coltm_u
is of particular interest.

The results of X-ray determinations o£ the gas column density are smmar-

ised in table IV. Copernicus data for the energy range 0.5 to

7.5 keV, were employed. While the n_nbers listed are in equivalent Hydrogen

atoms, the absorption is primarily due to elements such as oxygen and

neon and the values of NH determined from X-ray data depend very largely
on the element abundances assumed for the interstellar material. Because

of this, values of .N_ have been deduced from the X-ray data for a number
of different models_f the interstellar absorption cross sections of
Brown and Gould and those of Fireman (1974) which include the effect

of grains of different sizes. The result of assuming the Princeton value

of the molecular hydrogen col_nnwith a consequent increase in the column
densities of a ntlnber of the heavier elements is also quoted in the
table. The range of N= values derived from the X-ray data (2.6 to 4.0.1021

atoms cm-2 col_nn) ill_strates the importance of employing an adequately

representative model of the interstellar medium. However the UV based
column density does lie within the range of values permitted by the X-ray

observations and hence the identity of 3U0352 + 30 with the star X Per
is not excluded.



Studies of Copernicus X-ray data for the interval October 1972 to January

1975 have lead to the discovery of a 13.9 minute periodicity. Period

determinations made at various times during this interval are listed

in table V. Data obtained in December 1972 show periods measured for

the three Copernicus energy ranges. All other measurements refer

to the 2.5 to 7.5 keV band. All the periods determined agree within

the errors and so a mean period of 13.9325 + 0.0047 minutes has been

derived. The column headed mean source co[nat per minute indicates the

2.5 - 7.5 keV flux from the sourc changed by 30_/oin the interval Feb 1974,

to January 1975. Peak to mean amplitude values for the periodic flux are

presented in the last column of the table and the 2.5 - 7.5 ke¥ values of

this parameter do not appear to vary significantly. Data folded modulo

the 13.9325 minute'period are presented in Fi_Ire 6. Two complete cycles

are shown. The observations made in February 1974 were used to generate

this light curve. Although only 13 bins can be displayed in each cycle

due to the time resolution os the instrl_aent, %he light curve is quasi-

sinusoidal in shape and does not suggest the sharp cut off that would be

associated with binary eclipse. Sharply pulsed emission, such as might

arise due to beamed radiation from a neutron star, would also appear

to be excluded. A very. close binary system has been suggested by Pringle

and Webbink involving a pair of compact objects and having the quasi-

sinusoida| light curve esial)lished by an orbital variation in the electron

scattering optical depth could explain the _servations using a model similar

to that |,r"P °sed for Cy,jnu_ X-3 by Pringle (1974) and Davidson and

0s_riker (1971). Iin_,,x,,r :_ix other sources including 0900-40 (Rappaport

and McCJi,,,),k, (1975)), ,_,, transient s_,_ces (Ires et al (1975)),

Rosenberjz ,,i nl (1975)) aml three galactic sources (White et al (1975))

have now hr,.n found I,, ,'xhibit periodic behaviour with periods

in the range 1.73 to 31.9 minutes and so the possible existence of a class

of slow rotators should also be considered. In particular, Fabian (1975) has

drawn attention %o mechanisms which could lead to the slowing down of

a neutron star's rotation and give rise to periods in the range i - I00

minutes.

In addition to the pronounced 13.9325 minute periodicity, there is evidence

for X-ray modulation at a period of either ii or 22 hours for at least

some of the time during _41ich Copernicus has been observing the source.

_The general nature of larger term X-ray variability is illustrated by the

three samples of data shown in Figure 7. Each data point represents an

average taken over 5 integration periods. The data suggest a longer

%eI_II variability but its nature is not immediately obvious from an

inspection of Figure 7. _e nature of the data, which includes many

time gaps, makes it impossible to use straight forward Fourier analysis

techniques. A rather different approach has been developed by Murdin and

co-workers for application to data of this kind. A detailed discussion

of this work has been submitted toMNIgAS byWhite et al (1975b). The

results of this work are sl_marised in table V I. While no evidence for

a 22 hour variation emerges from the power spectral axlalysis, the 12

hot[r gaps in some of %he data make it possible that a 22 hour period would

not have been detected at a level of modulation of as much as 20_. There

is further evidence for a 22 hour period in data obtained recently with the

MSSL proportional counter on Ariel 5 (Figllre 8) but this obse1_vatiou

has not yet been subjected to a power spectral analysis.



Thus the X-ray source poses a n_nber of questions particularly if we

attempt to establish its association with the star X Per. The positional
evidence and the permitted agreement between X-ray and UV column densities
are suggestive of an association but not conclusive. Efforts to establish
the existence of simultaneous X-ray and optical variabili_y have not yet
been successful (see Margon, these proceedings) although further work of
this kind will be undertaken in the near future. Hutchings et al (1975)

have obtained evidence for periodic radial velocity variations which
suggest a 580 day binary period. These authors present evidence for the
accretion rate being a factor 2.103 lower than that in other X_ray emitting

binary systems and it is interesting to note that the X-ray luminosity of
3U0352+30 is lower than that of other systems by a similar factor.

Because of the presently confused situation further studies of X Per a_d
3U0352 + 30 are urgently required. While a better position determination
for the X-ray source could solve a number of problems, an adequate position
will probably not become available until after the launch of HEA0-B.
In the meantime, a continued search for simultaneousX-ray and optical

variability could prove fruitfull.

Although a good deal of Copernicus time habeen spent in observations

of Her X-l, analysis of the data is still in progress. However a partic-
ularly sharp exit from binary eclipse is illustrated in Figure 9 _Davison
(1975)). The time taken to emerge from occultation is less than one

Copernicus integration period or 62.5 seconds. A consideration of the

orbital parameters of the Her X-1 system suggests that the size of the
X-ray emitting region must be less than 5000 Km.

Reference is made in table II to several observations of 'targets of
opportunity'. One of these was the transient X-ray source (A1742_28)
which was first detected in the region of the galactic centre by the

rotation modulation collimator instrument on Ariel 5 (Eyles et al (1975)).

The light curve of this object is showl in Figure 10o Data from a number of
satellites including Ariel 5 (Branduardi et al (1975), ANS (Brink_nan (1975)

and Copernicus, are plotted. The Copernicus observations in particular provide
source intensities at between 50 and 200 days after the peak of the light
curve. These points suggest that the rate of decay of the X-ray flux is
becoming less steep with time.

X-ray spectra of A1742-28 have been obtained with Ariel 5 and Copernicus
and are shown in Figure 11. The spectrum of the galactic centre X-ray
source (GCX) is plotted for comparison. While the spectral shapes measured
in February 1975 by Ariel 5 ai_ March, 1975 by Copernicus are consistent
and the Copernicus spectrum for May, 1975 shows a significant hardening.
A more detailed account of these observations is in preparation (Branduardi,

et al (1975)).

Many other observations have been carried out by Copernicus in the year
up to October 1975 as will be apparent from the list presented in table

II. It is expected that Copernicus will continue to observe galactic

X-ray sources in the course of next year.
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Table I : Copernicus X-ray Instrument Parameters

Energy
Detector Range (keV) Field of view

w : '

Collimabed Proportional 2.5 - 7.5 3.5 ° x 3 ° (FI_VI)

Counter

Paraboloidal X-ray reflector 1o4 - 4.2 10', 3' and 1'

and Proportional Counter

,, ,, ,, ,, ,, t, " " 0.5 - 1.5 iO', 6' and 2'

Paraboloidal X-ray reflector 0.1 - 0.6 10'

and Channel Multiplier

Table II :

i) GALACTIC SOURCES

Copernicus Observations 1974 - 75

ff_'GNUS X-1

CYGNUS X-2

CYGNUS X-3

C_TAUI_S X-3

SCORPIO X-1

IIERCIJLES X-1

VELAX-1

3U1700 - 37

X PERSEI (3U0352 + 30)

3U1728 - 16

3U1811 - 17

3U1813 - 14

2) T_ETS OF OPPORTUNITY

C_]TAURUS X-5

GALACTIC CI_NTRE TP_LNSIENT

3U1908 + 00

NOVA CYGNI 1975

10



Table III

X-PEaSmS (auo352 + 3o)

COPERNICUS IN HYDROGEN COLUMN

I) ImmOG_ Ly-_ N1 = 2.0 + 0.5.1020 ATOMS CM"=2

2) MOLECUIARHYDROGliN N 2 = 1.1 _ 0.3.1021 ATOMS CM-2

a) TOTALH_ROG_ NT = N1 + _2

= 2.4 + 0.4.1021 ATOMS CM-2

4) MOLECULAR FRACTION f = %_2 = 0.92 _ 0.04

NT

11



Table IV

x-_ms_s (3uo352+ 30)

COPERNICUS X-RAY HYDROGK_ COLILIN

1) BROWN + GOULD (1970) ISM - ALL tt ATOMIC

NX = 4.0 +0.2 .1021 CM-2-0.4 ATOMIC

2)

3)

FIP2MAN (1974) ISM - ALL H ATOMIC

_) NOGRAINS Nx = 3.3+0.3.1021 ATOMS CM -2

b) 0.15 li GRAINS

NX = 3.8 + 0.1.1021 ATOMS CM'-2

rlr_ (1974) isM _ MOU_C_,_U_r_CTION AS

FROM UV DATA - BROWN + GOULD (1970)

MOLECULAR CROSS SECTION

a) N0 GRAINS Nx = 2.6 _+ 0.3.1021 ATOMS CM-2

b) O.15 _ GIt_S
Nx = 2.8 _+ 0.2.1021 ATOMS CM"-2
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ANS RESULTS ON X-RAY BINARIES

J. Heise, A.C. Brinkman

Space Research Laboratory

Utrecht, Holland

ABSTRACT

A short description is given of the Astronomical Netherlands Satellite

ANS and the X-ray instruments of the Space Research Laboratory in Utrecht.

ANS observed in February 1975 a soft _ KeV) X-ray flux in Her-x-I during

the 'off'-state with an intensity of a factor I0 lower than observed

previously in the 'on'-state. The measured uncorrected intensity is

(1.1 _ 0.2)10 -11 ergs/cm 2 sec in 0.2 - 0.28 keV at earth.

The ANS observations on Cyg-X-I are summarized. Duping the May 75 flaring

state a very high intensity at 0.5 keV is measured consistent with a

power-law Ph0ton-spectrum with index 3.5 and an interstellar absorption

of 7.1021 atoms/cm 2, but not consistent with spectra that show an

additional cut-off below 1KeV and an absorption of 7 1021 atoms/cm 2.

Intensity changes on a time scale of minutes, as observed in Cyg-X-1

lowstate, ar_ not observed during the flaring state.

INTRODUCTION.

The Astronomical Netherlands Satellite (ANS) was launched on

August 30, 1974 in a sun-synchronous polar orbit, with perigee

at 265 km and apogee at un unintended height of 1120 km.

The spacecraft carries instruments from three different groups:

a. a UV-stellar spectrophotometer (University of Groningen)

b. two X-ray detectors from S.A.O., Cambridge, Massachusetts

c. two X-ray detectors from Space Research Laboratory, Utrecht.
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First we describe shortly some capabilities and limitations of

the spacecraft, since that has a great impact on the experiments.

Secondly we will mention the main characteristics of the Utrecht

X-ray experiments. And then we will describe some of our results

on X-ray binaries .

Among the first, elsewhere published, scientific results of the

Utrecht instrumentations are the detection of an X-ray flare in

YZ-C Mi and in UV Ceti (Heise et al., 1975), the discovery of a

soft X-ray flux of Sirius, clearly distinguishable from its UV

contamination (Mewe et al., 1975a, 1975b), and the detection of

a soft flux from Capella (Mewe et al. 1975b).

SPACECRAFT.

The choice of the ixlar orbit and the attitude control system

were mainly determined by the requirements of the UV-instrument.

The nature of this instrument, the observation of a large

number of faint stars, requires that the satellite should be

pointed accurately and it should be possible to change attitude

easily. A three axis stabilized satellite is chosen with an

attitude control system such that one axis is continuously

pointed towards the sun for a clear and reliable reference

necessary for this small satellite (125 kg). See for a full

description Bloemendal and Kramer (1973). This attitude control

system implies that X-ray objects can only be observed, if they

are located within a distance of 2.5 degree from a plane per-

pendicular to the connecting line with the sun. Because of the

annual rotation of the Earth around the sun, every object in
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the sky can be observed in principle once per half year for

5/cos _ days, where 8 is the ecliptic latitude.

A horizon sensor measures the angle between the horizon and

the viewing direction of the scientific instruments. The

onboard computer calculates the required torques for the

reaction wheels to slew to a desired direction. This can be

done with an accuracy of better than 1°. To achieve the I arcmin

accuracy, a star sensor is used. After a slew manoeuvre the

satellite is left in the scanning mode (4 ° per minute). The

star tracker must now recognize a predetermined set of two

reference stars within 1.5 degree of the target position and

with magnitude brighter than 8.5 TM. Also a slow scan can be

made after a star recognition with scanspeed of 0.6 ° per minute.

Every 12 hours, when the satellite passes over its main ground-

station, a new observing program is loaded and the accumulated

data is dumped. If the available memory capacity (7 blocks of

4096 16 bits words) is insufficient for a full 12 hour period,

the memory can be dumped over other groundstations.

In summary the spacecraft offers

I. continuous pointing with an accuracy of I arcmin;

2. an offset-pointing capability, whereby the viewing direction

steps repeatedly on and off the source for maximum 256 sec

with a transition time of 16 seconds. The off-source position

could be at maximum 1.5 degrees away from the source;

3. a scan mode with scanspeed 4°/min;

4. a slow scan mode with scanspeed _°/min.
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THE UTRECHT X-RAY EXPERIMENTS SXX.

The Utrecht soft X-ray experiments are pictured in fig.

They consist of a soft detector (small area proportional

counter with 3.8 micron polypropylene) in the focal plane

of a circular parabolic reflector with a projected area of

144 cm 2 and a reflection coefficient of around 50%. A filter

wheel can select two fields of view (0.5 and 2 degrees FWHM,

circular), a UV-filter and a closed, calibrate position. The

UV-filter (0.5 mm M_ F2) blocks out the soft X-ray signal

completely and enables us to determine the contribution of

the UV-signal to the measured countrate. The overall efficiency

of the soft-detector is shown in fig. 2 , solid curve. The main

efficiency is between .2 and .28 keV, as also determined by the

pulse height discriminator limits of .13 and .41 keY, but note

the low efficient side lobe at .5 keV, which contributes

slightly due to finite counter-resolution into the range

.13 - .41 keV. This latter effect is responsible for the soft

X-rays in Cygnus-X-l, which I will describe later.

The second instrument consists of a medium energy range X-ray

detector with a 1.7 micron Titanium window and an effective

area of 40 cm 2. The field of view is collimated to a rectangular

form of 34' x 90' and is sensitive in the range 0.6- a8 keV with

an extra channel around .45 keV (see fig. 2 , broken line).

Pulse height information of 7 energy channels can be sampled

every i, 4 or 16 seconds.
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In the high time resolution mode all photons are binned in

125 msec intervals for either the soft- or medium-energy

detector. In the pulsar mode 7 photons per second are registered

with an accuracy of ! msec.

SOFT X-RAYS FROM HERC-X-I IN THE OFF-STATE.

ANS could observe Herc-X-1 in February and August 1975.

In February the source was in the off-state of its 35 d cycle,

approximately 7 days before an expected turn-on. In fig. 3

the raw data is shown for a measurement on Her-X-l, with the

satellite in an offset-pointing mode, printing alternatively

80 seconds on the source and 80 seconds 50 arcmin away from

the source. It is clearly seen that we have detected here

with our soft X-ray detector (parabolic reflector system) a

definite flux between .2 - .28 keV. The medium energy detector

showed no evidence for a X-ray flux between I - 7 keV. The

soft X-ray countrate is .7 c/s with a statistical significance

at a level of 6 sigma (0.66 + 0.11 c/s). This corresponds to

1.1 10 -11 ergs/cm 2 sec in .2 - .28 key measured at earth. The

radio data of Heiles (1975) and Tolbert (1971) indicate a

hydrogen column density of 7 1020 atoms/cm 2. If we take the source

to be at least 2 kpc (Bahcall etal. 1974), then in view

of the high galactic latitude of the source the total column

density will be between the source and earth. If we correct the

measured flux for such an interstellar absorption one would

have a flux of I.S 10 -10 ergs/cm 2 sec at earth. Compared to the

X-ray flux between 2 - 6 keY of 10 -9 ergs/cm 2 sec this

is a rather large fraction. This fraction however is rather
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sensitive to the adopted column density of interstellar matter.

For example for a density of 3.1020, 5.1020, 7.1020 atoms/cm 2

the interstellar transmission is 28%, 14%, 7.5% respectively

in the .2 - .28 keV band, assuming the Brown and Gould (19 )

abundances.

Previous observations made in the on-state of Hercules-X-I

35 day cycle by NRL (Shulman et al. 1974) and also Catura

and Acton (1975) have measured an intensity in this energy

range which is a factor of 10 higher. Our measurement

during the OFF-state is consistent with earlier obtained

upper limits (Shulman eta!. 1974). It follows from our

observations that the soft X-ray flux at I/4 key of Her-X-I

a. is not constant throughout the 35 d cycle, but varies

with at least a factor of I0

b. is not always off, whenthe hard X-ray flux is off

c. the soft X-ray intensities are remarkable bright.

The interpretation of the soft X-ray flux is rather difficult.

The black body intensity of a neutron star at a temperature

of _ I06K, without interstellar absorption would yield

2.6 10 -13 2 2 ergs/cm 2 sec in the range .2 - .28 keV
R10/D2kpc

where RI0 is the neutron star radius in unit of 10 km and

D de distance in units of 2 kpc, and hence is too small to

account for the measured luminosities for both ON and OFF-states.

Also, in the usual picture of the accretion disk model, the

accretion disk itself could not give rise to such high luminosities

in the soft X-ray range compared to the harder X-ray luminosities.
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If the emission is caused by an optical thin gas surrounding

the X-ray source, the contribution of line radiation is dominant

over the continuum by a factor of 20 in our soft X-ray channel.

In fig. 4 we plotted the expected countrate of an optical thin

source of emission measure 1050/cm 3 placed at a distance of I pc

as a function of temperature. One sees that mainly Si VIII, Si IX,

S X are contributing. If the soft Her-X-1 flux were due to such

emission, the required emission measure at 2 kpc during the OFF-

state would range between 3.1057/cm3and 1.2 I058/cm 3 for

assumed interstellar column densities between 3 1020 and 7.1020

atoms/cm 2. From the measurements of Shulman et al. (1974} and

Catura et al. (1975) one would infer emission measures that are

a factor of 10 higher in the ON-state. For a spherical volume

with radius I03 cm around the neutron star for example, this

would imply electron densities of the order of I015/cm 3 in the

OFF-state and 5.1015/cm 3 in the ON-state. At such densities the

electron scattering opacity is.of the order of unity.

The light curve of the ANSobservations of Her-X-1 in August

1975 is shown in fig. 5 . The source is seen during a turn-on

in its 35 day cycle. The exact turn-on must have happened be-

tween binary phase 0.2 and 0.5 on August 28, 1975, as was also

reported by Serlemltsos et al. (1975). Unfortunately at this

time the window of our soft detector was broken, so that no

soft X-ray measurements could be made during the turn-on.
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CYGNUS-X-I

Cyg-X-i has been observed by ANS in November 1975 and in May 1975.

In May 1975 we discovered the source to be in a high intensity state.

The flux around 2 keV was a factor of 10 higher than observed in

November 1974 (J. Heise et al. 1975a, 1975b). Fig. 6 shows the complete

lightcurve of our May data. One data point is typically 10 to 20 minutes

worth of data, hence statistical errors are of the size of the data

points. The spectrum has changed to a very steep powerlaw (photon number

index 2.5) compared to November 1974 (index _ ) and did not change

markedly during this flare period. The best fit spectrum is shown in

fig.7 with powerlaw photon index of 3.5 and a cut-off corresponding to

7.1021 atoms/cm 2. Due to a decrease in opacity of the interstellar

medium below the oxygen K-absorption edge around 0.5 keV, a significant

flux could be detected in the parabolic section of our instruments. The

measured flux around 0.5 keY is entirely consistent with the above men-

tioned spectrum. As also a column density of 7.1021 atoms/cm 2 is the one

expected from purely interstellar matter, this would imply that the

intrinsic source spectrum of Cyg-X-i in the high state is a very s_ep

powerlaw, increasing 8/I the way down to at least 0.5 keV, and this im-

plies that the bulk of the X-ray energy is emitted below I keV. Attempts

to fit the data with spectra that do not have this energetic soft X-ray

component, e.g. a powerlaw with a break to index I below 1 keV, always

need a lower column density to account for the measured flux around

0.5 keV"(typically 4. 1021 atoms/cm2).

A remarkable difference between the flare data of May 1975 and the low

state data of November concerns the time variability of the order of

100 sec.
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In November1974 we often observed intensity changes of 30 to 50 % on

a timescale of I00 sec: intensity dips (see fig. 8 as an example) rather

symetric in time and correlated with spectral changes in the sense that

at lower intensities the spectrum is harder. In fig.9 the correlation

is shown for spectral fits taken with a constant absorption of 7.1021

atoms/cm 2. Significant changes of that sort are not observed in our May

data of Cygnus-X-I during the flaring state, although the total time

coverage of the source has been much better.

A qualitative interpretation could be given (Thorne and Price, 1975)

on the basis of the standard accretion-disc model for Cyg-X-l. Here

the spectrum has _WOmajor components. A high energy component origi-

nating from a thick, but optically thin inner region and a thin, but

optically thick outer region of the accretion disc. The relative con-

tributions to the total spectrum are dependent on the location of the

transition radius between those two regions. Variations of the order

of the drift time of gas through the X-ray emitting region are to be

expected. These are stronger in or near the notch of the spectrum than

elsewhere.

If the low and high states of Cyg-X-I are due to changes in accretion

rate, the location of the transition radius is such that the "notch"

of the Spectrum falls into our energy range, say between 2 and 5 _eV.

The time scale for variations than is of the order of minutes, as ob-

served, (drift-time through X-ray emitting region) and one would also

expect this to be correlated with the hardness of the spectrum measured

in the range 1.7 keY.
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In the high state, the transition radius in Cyg-X-1 would be much

closer to the central object, the "notch" of the spectrum is

shifted outside our energy range (> 7 keV) and in this range one

does not see any more spectral changes in relation to intensity

variations, as is observed. Also the time scale of the variations

will be shifted to much shorter times (order of seconds).

OTHER X-RAY BINARY SOURCES.

For completeness we show the lightcurves of other X-ray binary

sources as obtained so far from quick-look data. Fig. 10 gives

the source 3U 1700-37, Fig. 11 the lightcurve for Cen-X-3 observed

in July 1975 in the scan-mode of the satellite (only a few seconds

of data per datapoint).
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X-RAYSPECTROSCOPYWITH THE ANS SATELLITE

H.W. Schnopper, J.P. Delvaille, A. Epstein, H. Gursky, J. Grindlay,

K. Kalata: D.R. Parsignault*, A.R. Sohval and E. Schreier
C enter for Astrophysics

60 Garden Street

Cambridge, Massachusetts 02138

ABSTRACT

Preliminary results from the Bragg crystal spectrometer on
the ANS satellite are given. No significant Si XIII and Si XIV

narrow line emission has been detected from Cygnus X1, 2,

or 3.

A small Bragg crystal spectrometer is incorporated in the Hard X-Ray

Experiment (I-CCX) on the Astronomical Netherlands Satellite (ANS). More

complete details of the experiment and the satellite are given elsewhere (Gursky

et al, 1975; Schnopper et al, 1975).

The spectrometer is designed to observe sources of small angular extent
and is sensitive to line emission from highly excited ions Si XIII and Si XIV (see

Table I).

Table L Characteristics of the Silicon Lines to be Observed by ANS

Crystal Ion.___s

Bragg 2 St XIV

o e
Transition A(A) B_gg

is %! _3
2 2 2

Nominal
Reference

Offset

6.184 45001 ' 0'.0

Bragg 1 Si XIII Is2 1So - Is2p IP 1 6. 649 49°31 '

Bragg 1 Si XIII ls 2 1S - ls2p 3p 6. 684 49°52 '
o 2,1

Bragg 1 Si XIII ls 2 1S - ls2s 3S 1 6.739 50026 '
O

- 12'.6

- 33'.9

- 67% 6

* American Science and Engineering, Cambridge, b_.A
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TwoindependentPETcrystals,offsetfrom each other in Bragg angle, are used to

scan both line regions simultaneously. Scanning is accomplished by offset

pointing of the spacecraft from the head-on direction to the source. A field of

+ 75 r can be scanned.

The satellite is in a sun synchronus polar orbit and a typical source is

viewed for about five days before it leaves the field of view of the coarse (3 °

FWHM) collimation system.

The sensitivity of the spectrometer is measured by NLm the minimum
number of photons in the line which are detectable above the background counting

rate. In general, the number of photons observed in the line is given by: (Schnopper

et al, 1975)

N L = ATqP F(E) C A EL

where,

A = effective area (geometry only) for x-ray detection,

T = time of observation,

_1 = net efficiency for detecting an x-ray of energy E (transmission

through windows, detector, but not crystal),

= peak reflectivity of the crystal,

= continuum flux from the source at energy E,

= equivalent width.

P

F(E) C

and A EL

For a minimum detectable signal, N L = N L m = 3 (NB)1/2, where N B is the back-

ground counting rate. For the ANS spectro{neter, N B is dominated by nonsource
related x-rays and charged particles. Table II lists the parameters relevant to the

ANS spectrometer.

Table II. Parameters for N L and Z_ E L Calculations

SIXIV E= 6.18keV ANS fiat

disperser PET 2d = 8.7

peak efficiency P 0.17

resolution A E eV I. 2

detection efficiency 11 O. 5
collecting area cm 2 50

detector area cm 2 50

background cm-2sec -1 6 x 10 -S

Because of the highly eliptical nature of the ANS orbit, N B can vary over a very
wide range of values. In a typical orbit about 103 seconds of good data can be obtained

during the times when the satellite is not in the polar cap region or in the South
Atlantic Anomaly.
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Table III gives experimental results for the sources Cygnus X1, X2 and X3.

Source Date

F(I. 9 keY) NL, m A EL

(photons/ T photons/ eV
cm2-sec-keV} se_.s_c 64 sec

Si XIII 1p
3U 1956 + 35

( Cygnus X1 ) May 1975 4.6 601 4.4 4. 0
Nov. 1974 0.16 576 4. 6 119

3U 2030 + 40

( Cygnus X3 ) May 1975 0.02 382 5.8 712
Nov. 1974 0.05 349 5.9 5q3

Si XIV Zp

3U 1956 + 35

(Cygnus XI) May 1975 4.6 704 3.8 3.5
Nov. 1974 0.16 1056 3.9 101

3U 2142 + 38

( Cygnus X2 ) June 1975 1. 2 576 4.7 16.4

Dec. 1974 0.91 875 3. 8 17.5

3U 2030 + 40

( Cygnus X3) May 1975 0.02 640 4.1 900
Nov. 1974 0.05 400 4.5 385

A typical scan covered about 5 eV on either side of the nominal line position in

about 10 steps. Although total time T was spent at each step, NL. m is given in

units of photons/64 sec since the spectrometer is read out once e_ch 64 sec. In

Table HI, Z_ E L is the equivalent with corresponding to NL, m"

Tucker and Koren (1971) discuss line emission from a hot thin coronal plasma.

They predict values for ZIE L which can be compared with our data if the ion tempera-
ture of the source is known. Given the proper emitting conditions, values for A E L

as high as several hundred eV are not unusual.

Our data, however, do not yield a measurable signal N L above the 3 standard

deviation upper limit N L m" In the case of Cygnus X3 our result lacks a strong
significance since the source spectrum is severely cut-off in the region of the line

emission. In contrast, Cygnus X1 was observed in a high state during May 1975 and our

upper limits for Si XIII and Si XIV preclude any significant narrow line emission. Our

results, however, do not rule out significant contributions from broadened line shapes.

Furthermore, it is not possible to put meaningful upper limits on AE L for the case

where the line is broadened to a value greater than about 10 eV. This value would be

expected on the basis of steUar wind models (S. Hatchett, 1975)o This line broadening

is modest when compared with the values predicted by various electron scattering
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theories and by the dynamical effects of accretion onto a large disc. It would require
a much greater sensitivity than we have to be able to detect a residual, unbroadened
line core.
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ABSTRACT

The large-area graphite crystal X-ray spectrometer on the

OSO-8 satellite is described, and its response to stellar

line and continuum radiation is discussed. A high-reso-

lution X-ray spectrum of Sco X-I obtained from a prelim-

inary analysis of quick-look data shows a strong, smooth

continuum with an absence of emission or absorption fea-

tures over the energy range 2.2 to 8 keV. Upper limits

are set on narrow line emission from highly ionized states

of S, Ca, and Fe.

INTRODUCTION

In the past few years numerous groups have measured the X-ray spectra of the

stronger galactic sources using proportional counters. For several sources,

excesses have been seen in the continuum spectra near 6.7 keV, and these fea-

tures have been interpreted as line emission from highly ionized iron (Holt,

Boldt, and Serlemitsos 1969; Acton et al. 1970; Serlemitsos 1975; Pravdo

1975; Mason 1975). However, because the resolution of the best proportional

counters at these energies is about 900 eV, it is not possible to make an un-

ambiguous interpretation of the features as emission lines. Crystal spec-

trometers with high spectral resolution have been flown aboard sounding

rockets in search of narrow line emission from Fe +24, Fe +25 (6.7 keV) and

S+15 (2.6 keV) in Sco X-I (Pounds 1971; Kestenbaum, Angel, and Novick 1971;

Griffiths 1972; Stockman et al. 1973), but these sensitive searches failed to

53



detect the expectedlines. The3oupperlimits that wereobtainedfor narrow
line emission(equivalentwidthsof 6.7 eVfor S+15and3 eVfor Fe+24)have
beenusedto showthat electronscatteringandresonancetrappingareoccur-
ring within theplasma,thusseverelybroadeningthe line emissionfromSco
X-I (FeltenandRees1972;LohandGarmire1971).

TheColumbiagraphitecrystal spectrometeronOSO-8is capableof detecting
narrowline emissionfromoptically thin sourcesandof determiningdetailed
shapesfor X-raycontinuawith high spectralresolutionoverthe 2--8keV
band. Strongfeatureswhichresult frombroadenedline emissionwill beob-
servable,andthe amountof broadeningmaybeusedto determineplasmaden-
sities andtemperatures.In the followingsectionwebriefly describethe
instrumentanddiscussthe responseof the spectrometerto stellar continuum
andline radiations. In SectionII wepresentsomepreliminaryresults for
ScoX-I obtainedfromten orbits of quick-lookdata.

I. THESPECTROMETER

Thespectrometeris locatedin thewheelsectionof OSO-8andmakesuseof
the wheelrotation to obtaina completeBraggscaneverylO sec. A schem-
atic diagramof the spectrometerindicating the principle of operationis
shownin Figurei. A featureof the spectrometer,andonethat appears
strikingly in thedata fromScoX-l, is that eachproportionalcounteris
illuminatedby reflected X-raysovera different rangeof Braggangles. This
featureallowsus to obtainbackgrounddataduringeachBraggscanwhenthe
individual detectoris not beingilluminated. In Figure2 is shownanex-
plodedviewof the instrument. A slat collimatorpositioneddirectly in
front of the crystal panelslimits thespectrometerfield of viewto within
3° of the0S0-8wheelplaneandhasenabledthe spectrometerto obtainuse-
ful dataonstellar sourceslocatedin the centerof the galaxywherethe
populationdensityis high. X-raysfromanon-axissourceenter throughthe
slat collimatorandstrike the large crystal (2170cm2) panels. Graphite
mosaiccrystals werechosenfor their highreflectivity of stellar continuum
andline radiation. ThoseX-rayswhichsatisfy the Braggconditionmaybe
reflected into thecentral bankof detectors. Thedetectorsare double-
sidedproportionalcounterswith l-mil berylliumwindowsoneachside and
containanargon-xenongasmixturechosenfor its highopacityoverthe 2--8
keVrange. A groundedwire grid planethroughthe centerof the bankof
counterseffectively divides the instrumentinto twoisolated spectrometers.
Detectedeventswhichpassrise-time andanticoincidencetests andwhich
satisfy pulse-heightcriteria areencodedasdigital wordsandstoredin a
taperecorderwhosecontentsare readout overspecifiedgroundstations.
Eacheventis assignedthreebits of counterlocation information,five bits
of pulse-heightdata,and12bits of azimuthinformationwhichallow a deter-
minationof the Braggangleto 0.I °. Thisaccuracyis sufficient for super-
positionof Braggscanssincethe crystal panelrockingcurvehasa FWHMof
0.7°.

Thereflecting propertiesof large-areagraphitecrystal panelshavebeen
measuredin the laboratoryusinga beamof C1fluorescentradiation (2.6 keV),
collimatedto 0.12° (Kestenbaum,Angel,andNovick1971;Kestenbaum1972).
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At this energythepeakreflectivity is about6.4 percent,with a FWHM=
0.7°, correspondingto a resolutionof 32eV. At 2 keV,theresolution is
i0 eV,andthe peakreflectivity is 14percent,while at 6.7 keV,wherethe
Felines areexpected,the resolutionis 285eV,andthe peakreflectivity
is 21percent. Wehavemeasuredthoroughlythe reflectivity of a graphite
crystal sampleoverthe range2--8keVandhavefoundthat the theoretical
curvefor integratedref!ectivity givesa goodrepresentationof the data
apart froma normalizationconstant(Kestenbaum1973). Thus,in our spec-
trometerresponsefunction,wehaveusedthetheoretical curveof reflectiv-
ity vs. energy,normalizedto the measureddatapoints.

In ourdata reduction,weusethe measuredsignal countingrate R (E) from
the continuumas a functionof BraggangleOto determineanincident contin-
uumspectrumIc(E) [keV(keVcm2 sec)-l], usingthe followingrelation (Kes-
tenbaum1972):

Rc(E) = Ic(E) [A(E)g(E)A0(E)cot O] , (i)
whereE is theX-rayenergyat the centerof a resolutionelement(0.7°
width). TheareaA(E)of the detectorilluminatedby X-rayshasbeendeter-
minedby a completecomputersimulationof thespectrometer,wherethe pro-
jected crystal areaavailablefor reflection hasbeentakeninto accountas
well asall shadowingeffects causedby collimators,strongback,andstructur-
al supports. Counterefficiencies g(E)havebeencalculatedfromthe known
gaspressureanddepth,windowthickness,andrise-time settings. Theinte-
gratedreflectivity A0(E)hasbeendeterminedfrommeasuredvaluesas dis-
cussedabove. In this waywehavedeterminedaneffective areaAc(E)for
eachcounterfor eachresolutionelementfor continuumradiation overthe
bandwidth2--8keV;Ac(E), representedby thetermin bracketsin equation(i),
is plotted in Figure3(a). A featureseenin Figurei, in whicheachcounter
is illuminatedby reflected radiation overa different rangeof Braggangles,
canbeseenclearly in the responsefunctionandis geometricalin nature.
Thegeneraltrendof increasingareawith increasingenergyis causedby the
changein resolvingpowerof the crystals; at higherenergies,the resolution
is poorer,anda larger fraction of continuumis reflected, yielding a larger
effective area.

A relation similar to equation(i) canbewritten for narrowline emission:

RL(E) = IL(E) [A(E)g(E)Peff(E)] (2)
HereR.(E)is thenet signal countingrate fromanX-rayemissionline of en-
ergyE_IL(E) is the line strength[photons(cm2 sec)-l], andPeff(E) is the
effective peakreflectivity (=0.8x peakreflectivity) overa resolutionele-
ment. Thetermin bracketsis definedasaneffective areafor line emission
AL(E)andis plotted from2--8keVin Figure3(b). Clearly, the instrumentis
mostsensitiveto detectingnarrowline emissionin the rangefrom1.9 to 3
keV,wherethe crystals reflect a large fraction of incident line radiation
[AL(E)large] anda smallfraction of incidentcontinuumradiation [Ac(E)
small]. In this energyband,emissionlines fromhighly ionizedstates of
Si andSwill predominate.
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Thedeterminationof the spectrometerresponsefunctionsAc(E) andAL(E) is
critical for anydeterminationof continuumshapesandline equivalentwidths.
Tocheckthat our responsefunctionsareaccurate,wearemakingseveralin-
flight calibrationsof the spectrometer.Onetest is to observethe CrabNeb-
ula for morethanoneweekandseeif wecanemploythe computedfunctionsto
reproducethewell-knownpower-lawspectrum.A secondtest, alreadyperformed,
is to observeboth the continuumandlines fromthe optically thin solar cor-
ona(Fig. 4). Wehaveusedourvaluesof Ac(E)to determinea solar thermal
continuumspectrumfor whichwehavecalculatedthe temperature.A second
estimateof the temperaturehasbeendeducedfromthe measuredratio of
strengthsof variousSi lines by usingthe calculationsof Mewe(1972)and
TuckerandKoren(1971). Thetemperaturefor the continuumagreeswell with
that obtainedfromthe line strengths,andthe consistencygivesusconfidence
in thecomputedresponsefunctions.

II. OBSERVATION

ScoX-I wasobservedfor four daysfrom1975July 9 to 13, andwehaveanal-
yzedquick-lookdataobtainedduringten orbits. Thequality of the datacan
be seenin Figure5 wherewehavesuperposed155Braggscans(26minof obser-
vation) for twocounters. Thestrongsignal fromScoX-I, dominantabovethe
backgroundrate, is seento occurovera different rangeof Bragganglesin
eachdetector. In Figure6 areplotted all the quick-lookdatafromcounter
No.5 consistingof the superpositionof 1459Braggscans(~4hr of observa-
tion). Thehistogramrefers to the left-handscaleandrepresentsthe count-
ing rate in eachresolutionelement(0.9° bins werechosen)with ±10error
barsobtainedfromcountingstatistics. Thedashedline is the background
rate obtainedduringthe sameBraggscans,but whenthe counterwasnot being
illuminatedbyreflected X-rays. Thecrosses(X's) refer to the right-hand
vertical scaleandrepresentthe effective areaper resolutionelementAc(E).
For eachresolutionelement,wehavetakenthe total countingrate andsub-
tractedthe backgroundrate to obtainthe net signal rate Rc(E);wethenhave
dividedbythe effective areafor that resolutionelementto obtainanincident
continuumspectrumIc(E). In Figure7 weplot asa histogramthe spectrumob-
tainedfor ScoX-I with ±10error barsobtainedfromcountingstatistics
alone. Thesolid curveis the best fit of the datato an incident thermal
spectrum

Ic(E) = I0 E-0"3 exp(-E/kT) (3)

Thebest-fitting parameterswereI0 = 83keV(keVcm2 sec)-I andkT= 4.5
keV,yielding a valuefor X2 of 71 for 45degreesof freedom.Narrowline
emissionwouldmanifestitself as anexcessin onebin, andnosuchfeature
is observed.Severalbins aremarkedbyarrowson the figure, indicating
whereonewouldexpectexcesseventsresulting fromstrongS, Ca,andFeline
emissionin a thin, hot plasma.In Tablei wegive upperlimits (30)on the
equivalentwidthsof theselines. Theseresults, in agreementwith previous
upperlimits for narrowline emissionin ScoX-I, indicate that electronscat-
tering of the X-raysis greatly reducingthe observablellne strengths. Fur-
thermore,nobroadenedfeatureat 6.7 keVis seen,but westress that the
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presenceof a feature would be indicated by excesses, in several contiguous

bins, above the best-fittlng spectrum. Thus, the search for a broad feature

relies rather heavily on the assumed thermal spectrum used in the fitting

procedure. The statistical accuracy of the data wlll improve by a factor of

about four when the production data are analyzed, and any definitive conclu-

sion about the presence or absence of a broadened feature must await the full

analysis.
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Line

S XV

S XVI

Ca XIX

Fe XXV

TABLE i

X-Ray Spectral Data of Sco X-I.

Upper Limit on Equiv-

Energy Type of Crystal alent Width at 30

(keV) Spectrometer _eV) Ref.

2.45 0S0-8 graphite 18 (a)

2.62 Graphite 6.7 (b)

2.62 0S0-8 graphite 17 (a)

3.88 0S0-8 graphite 26 (a)

6.7 Lithium fluoride 25 (c)

6.7 Lithium fluoride 3 (d)

6.7 0S0-8 graphite 72 (a)

(a) This work.

(b) Kestenbaum 1972; Kestenbaum et al. 1971.

(c) Griffiths 1972.

(d) Stockman et al. 1972.
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r

CRYSTAL

PROPORTIONAL
COUNTER
DETECTOR

Flgure i. Schematic diagram of the spectrometer showing the principle of

operation. A complete Bragg scan for each panel is obtained with every ro-

tation of the OSO-8 wheel. Each of the four proportional counters (Nos. i,

3, 5, 7) is illuminated over a different range of Bragg angles.
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Figure 5. (a) A superposition of 155 Bragg scans, with azimuth bins of 0.9 e

width, for proportional counter No. 5, with Sco X-I in the field of view.
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63



hO

0
25O

I I

X

X

X

I I I I

1 _-SCO x-1 DATA

XXx x.-
x

X
X

X

X
X

X

X

X

.F

X
X

X

X

BAOI4GRC)UND X

I I I I I

29.5 34.0 38.5 43.0 47.5 52.0

BRAGG ANGLE (DEGREES)

- I0

- .08

E
_t

- .06 ""

o

-.04

.02

Figure 6. The superposition of Bragg scans for proportional counter No. 5,

using data obtained from 4 hr of observation of Sco X-I. The histogram re-

fers to the !eft vertical scale and shows the counting rate in each resolution

element with ±la error bars obtained from counting statistics. The crosses

(_'s) refer to the right vertical scale and give the effective area of the

spectrometer in each resolution element (for counter No. 5) for continuum rad-

iation. The dashed line is the background counting rate when no source is in
the field of view.

64



5O

40

m
N

E
U

-" 20

@)
;[

z_ 15

10

I I
TSXV

m

Coil x

"r

I

m

I I I I,

Ft XXV
FeXXVl

111

7 I I |
2 5 4 5 iS 7 8 9

X-RAY ENERGY (keY)

Figure 7. The X-ray spectrum of Sco X-1. The hlstograaglves the intensity

in each resolutlon element vlth ±1_ error bars determined only froa countlng

statlstlcs. The solld llne is the best-flttlng thermal spectrum. The arrows

indicate energies where strong llne e_tsslon would be expected from an optl-

tally thin plasma with an electron temperature of 4.5 keY.

65
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ABSTRACT

The GSFC Cosmic X-ray Spectroscopy experiment aboard

0S0-8 has operated successfully since launch providing

in this 4-month period spectral and temporal data on

X-ray sources in the energy range 2-60 keV. Analysis

of "Quick Look" data shows a variety of spectral fea-

our understanding of the nature of individual sources.

In particular, observed emission and absorption features

that can he attributed to iron will result in abundance

measures of this important element in sources such as

some X-ray blnaries, the supernova remnant Cas A, and

the nucleus of the galaxy Cen A.

The X-ray Group at GSFC has an experiment aboard the 8th Orbiting Solar

Observatory (OSO-8), shown in Fig. I, a satellite launched on June 21,

1975 into a 550 km circular orbit at 33 degrees inclination. The

primary objectives of 0S0-8 are obviously solar oriented, and they are, for

the most part, dictated by the two pointed experiments mounted on the space-

craft spin axis. However, several other experiments are mounted on the

rotating portion of the spacecraft (wheel), three of which have exclusively

non-solar objectives. Their fields of view are either aligned to the spin

axis or they are at small angles to it, hence they always view the portion

0f the sky at right angles to the earth-sun llne.

The obJectlv_ of our experiment, somewhat updated in the lengthy period

between proposal and launch, are as follows:

1_ Spectra of sources and diffuse background in the range 2-60 keV.

2_ Source intensity and spectral variations on scales from fractions

of a second to several days.

5. Intensity profile and spectrum of the galactic contribution to the

diffuse X-ray background.

4, Sensitive search for weak emission from a limited number of objects

of importance to astrophysics.

In the four month period since launch, the only data received are of the

"Quick Look" variety. These consist of some i0 per cent of all data, wlth

predicted and incomplete orbital information and with spotty spin axis

posltlons. For these reasons, the data analysis conducted thus far cannot

_* NAS-NRC Associate
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proceedto a reasonable completion, particularly with regard to time varia-

tions and weak sources. The purpose of this paper therefore, is to pro-

vide a brief description of the experiment, setting the stage for

the subsequent papers on Cen X-3 and Her X-I, and to present some pre-

llmlnary spectra of selected sources for the purpose of discussing the

potential of this experiment for extracting information from such spectra,

as regards the nature of a source and conditions in the emitting region.

The experiment utilizes two xenon and one argon proportional counters.

Two of these have fields of view oppositely aligned with the spacecraft

spin axis. The third counter has its 5-degree field of view offset 5

degrees from the aft spin axis so that, with each wheel revolution, it

scans the region of the sky wlthln l0 degrees of the aft axis direction.

The two aft pointed counters have clear fields of view, whereas, the forward

pointed detector has its field of view periodically occulted by the pointed

instruments and by occultation shields mounted under the spacecraft sail.

All three detectors are of the same modular construction consisting of

stacked wire grids which partition a sealed gas volume into many rectangu-

lar cells with grounded boundaries and a central wire anode. The aft

pointed detectors have single gas volumes, whereas, the forward pointed

detector has two, back-to-back, independent gas volumes, one designed to

guard against electrons entering the detector via the collimator opening.

The collimator fields of view are circular, effected by BeCu tubing.

There are basically two commendable modes of operation: stored and real

time. Stored data consists of 64-channel pulse height information from all

three detectors read into the telemetry every _2.5 sec for the scanning

detector, and every 40 sec for the pointed detectors. Wheel azimuth infor-

matlon relative to the sun pointed instruments is used onboard to (I) sector

the data from the scanning detector so as to simultaneously produce, each

wheel rotation, source and background histograms; (2) bin the data from the

forward pointed detector according to a h_rd-wired program that makes distinc-

tion whether the field of view of that detector is open or occulted. For

the two zenon detectors, the 64 channels are arranged in a quasi-lognithmlc

format that doubles the resolution below about 15 keV.

In the real time mode the same pulse height information from only one of the

detectors (chosen by command) is read out, event-by-event, using an 8-blt

address. For sources that do not saturate the available telemetry, this

mode results in 20 msec temporal resolution. With few exceptions, integral

rates from all three detectors are monitored every 160 msec. On rare

occasions, the entire spacecraft telemetry can be made available to this

experiment, improving the temporal resolution to i .25 msec.

In Table i we sm_marize some relevant experiment information. In Table 2

• we llst characteristics of the three detectors. Detectors "B" and "C" are

the aft and forward pointed instruments respectively; "A" is the scanning

detector.
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TABLE i

DETECTOR

A

Total Area

Field of View

Observing Method

Energy Range

Temporal Resolution

Bit Rate

Flight Calibration

575 cm2

3 and 5 deg. circular

Small Angle Scan; Point

2-60 keV

160 msec (Normal)

20 msec (Real Time)

1.25 msec (Dwell Mode)

500 bits/sec

FeS_; Am e4_

TABLE 2

OUTER INNER AREA ENERGY

VOLUME VOLUME COLLIMATION WINDOW (cm _ ) RANGE VETO

-- xenon 3

methane 5 ° .O02"Be 263 2-60keY sides

-- argon 3

methane 3 ° o003"Be 76 ?-20keV sides

C propane xenon .002" 4

neon methane 5 ° mylar 237 2-60 sides

Non-solar observations with OSO-8 are closely tied to the orientation of the

spacecraft spin axis. Spacecraft design demands that the spin axis is always

within 3 degrees of the plane normal to the earth-sun line. Typical

maneuverability within that narrow band is 3 degrees per day using magnetic

torquing with occasional larger excursions effected by the use of gas jets.

The requirements of the solar pointed experiments and a limited gas supply

severely limit such large maneuvers. These constraints essentially eliminate

our capability to respond to a new discovery such as a transient source or

a large flare by an interesting object such as Cyg X-I.

By carefully planning the path of the spin axis subject to the above con-

straints, we, instead, methodically undertake to study most known X-ray

objects. For example, at the completion of the first year of observations,

we will have observed more than half of the sources in the 3rd UHURU cata-

logue. Observations may be as short as a few orbits, but for the most part,

they extend to several days per source. In the case of X-ray binaries, we

have been successful in maintaining a source in the field of view for at

least one binary cycle. _

The experiment has functioned without flaw during the first four months in

orbit. In Figure 2 we show a typical l-orbit rate profile from all three

detectors A, B, C, in that order. Each vertical trace in the plot corres-

ponds to all 64 rate readouts from each detector during one wheel revolu-

tion. The galaxy Cen A is in the field of view of the A detector; no known
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sourcesare in view of the other two detectors. We wish to bring to •tten-

tion several features in connection with this figure.

Electron contamination of the X-ray data causes the frequent rises in the

rates. The single volume xenon detector is the most susceptible to thls

effect. Because of its special design, the second xenon detector is more

effectively discriminating against this background. Precipitating electrons

have a lesser effect on the argon detector as well, partly because of its

smaller field of view and partly because of its thicker window. The data

gap in the middle of the figure is caused by a high voltage turn off, a

precautionary measure affected automatically by the on-board radiation

monitor.

Although a substantial fraction of the data are so cont•mln•ted, we find

that the detector background rapidly returns to a repeatable low st•re

immediately after the satellite exits the high radiation region. We have

seen no build up to the background of our detectors since launch.

In Fig. 3 we show a similar rate plot at a time when Cen X-3 was in the

field of view of the A detector. The periodic peaks are due to the beating

of the Cen X-3 spin period against the spin period of the spacecraft. The

rate distribution during one wheel revolution (i.e. one single vertical

trace) is shown in Figure 4.

The spectrum of Cen X-3, in and out of eclipse and during times of pre-

eclipse intensity dips, is discussed in a separate paper of these pro-

ceedings. We present here in Figure 5 one such spectrum obtained with the

A detector at maximum source intensity. The spectrum appears featureless,

i.e. there is no evidence of low energy absorption or of any other features,

particularly those that could be attributed to iron. The best fit is to an

exponential in photon energy than to a thermal. Obviously, the total emission

from Cen X-3 cannot be characterized as one from a tenuous plasma •t • given

tempera tu re.

Not so much consistent with the objectives of the conference, but very much

consistent with the scope of this paper, we next present in Figure 6 the

spectrum from the galaxy Cen A, obtained with the A detector from •bout 6

orbits of "Quick Look" data. We find that the spectrum can be fitted with •

power law heavily absorbed at low energies. The parameters of the best fit

spectrum are given on the figure. We note that the absorption is well

described by Brown and Gould abundances if we include iron, roughly, in the

amount consistent with a universal abundance. The effect of the iron absorp-

tion edge can be seen by inspection of the figure.

Using UHURU data, Tucker et al., 1973, proposed a spectrum similar to the

one presented here. Furthermore, they suggested that the emission originates

in the central region of the galaxy where the low energy photons are absorbed

by dust. With the eventual complete analysis of all the data from this

source, (some 20 times the amount presented), we expect to produce an accurate

measure of the iron abundance in the absorbing medium in the nucleus of Can A.
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Basedon data from OSO-7, Winckler and White, 1975, have found evidence for

variability of this source on time scales relevant to our exposure. We

find no such large variability with the data at hand. However, a more

detailed elaboration of this topic must await the availability of better

aspect information.

In Figure 7 we present the spectrum for Cas A obtained with the 2-gas C

detector. This is particularly of interest to us since we studied this

source with a similar detector flown on a rocket flight (Serlemltsos etal.,

1973). The 0S0-8 spectrum is generally consistent with that in Serlemitsos

etal., including the observed bulge around 7 keV which we have attributed

to broadened iron llne from charge exchange of energetic iron nuclei.. There

i8 one very significant difference in that the 0S0-8 spectrum, with better

statistics, clearly shows the presence of narrow iron lines near 6.7 keV.

This new evidence renders our previous interpretation unlikely. A more

plausible explanation is that the high energy broad feature is due to

thermal continuum from a higher temperature region, which is also the source

o£ the observed £_ou lines. We expect that a more _____1_J ._.I...__ v_^c__.^,=o

dab based on this new interpretation will result in the abundance iron in

this important source.

In a final example, we present in Figure 8 the spectrum obtafned for the

transient source Nova Monocerotis 1975. We observed this source at a time

when its intensity was comparable to Sco X-I. The spectrum is well fitted

by a thermal with kT = i keV. Note the absence of any feature around iron,

a significant fact since this is the same detector involved in the Cas A

observation.
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Figure 1. OSO-8
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ABSTRACT

The 0S0-8 satellite, launched on 1975 June 21, contains

two X-ray polarlmeters built by the Columbia Astrophys-

ics Laboratory. These polarimeters use mosaic crystals

of graphite to yield polarization-sensitive Bragg reflec-

tion of stellar X-rays. The crystals reflect a narrow

energy bandwidth centered at 2.6 and 5.2 keV. The po-

larimeter background signal is minimized by mounting the

crystals on parabolic surfaces which focus the diffracted

X-rays onto small-area, beryllium-window proportional

counters. This technique permits the observation of

low-lntensity X-ray sources and reduces the possibility

of systematic background effects which could lead to a

false signature of polarization. A description of the

instrument is given, and the sensitivity to polarization,

particularly in regard to binary sources, is discussed.

Preliminary results for Cen X-3 and GXb-I are presented.

INTRODUCTION

The 0SO-8 satellite contains two stellar X-ray polarimeters that are capable

of providing a sensitive search for polarization in a number of sources.

This experiment, together with studies of the energy spectra and time vari-

ability, will provide important information in identifying and understanding

the underlying X-ray emission mechanisms. For example, in the case of an op-

tically thin, thermal emitter, one expects to observe a thermal bremsstrah-

lung energy continuum, narrow-llne emission, and no linear polarization.

The role of polarization experiments in X-ray astronomy was firmly estab-

lished by the discovery (Novick etal. 1972) that the X-ray continuum of the

Crab Nebula was linearly polarized with magnitude and direction similar to

that observed in the radio and visible regions of the spectrum. This result,
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togetherwith the observed power-law spectrum and the discovery of the pulsar

as the source of the energy, identified synchrotron radiation as the emission

mechanism of thls object.

Apart from being able to differentiate synchrotron from optically thin emit-

ters, polarization experiments can also play a role in understanding the

emission of X-rays from binary systems. For example, if the electron density

in a thermal source is large enough so that the optical depth for Thomson

scattering is greater than unity and there are sufficient departures from

spherical symmetry, then we expect linear polarization up to 7 percent (Angel

1969). Such conditions may exist in the accretion disk surrounding a black

hole. Recently both Rees (1975) and Lightman and Shapiro (1975) have noted

that the standard accretion model (Prlngle and Rees 1972; Shakura and Sunyaev

1973; Novlkov and Thorne 1973) should lead to linear polarization of the X-

ray flux above 1 keV of between 1 percent and ii percent, depending on the in-

cllnatlon angle of the disk.

In the case of accretion onto a magnetic neutron star, both Rees (1975) and

Tsuruta (1974) have shown that the pulsed X-ray flux will be strongly polar-

Ized and that polarization studies as a function of pulse phase can serve to

distinguish between the "fan" beam and "pencil_' beam models of these sources.

Both authors have noted that the observation of polarlzatlon of much greater

than i0 percent from Her X-1 would effectlvely rule out the whlte-dwarf model

(Cameron 1975) for this source.

In the case of the Crab Nebula, we expect to achieve an accuracy of a few per-

cent on both the nebula and pulsar polarization. Roberts et ul. (1973) and

Sturrock etuZ. (1975) have predicted that the pulsar X-ray polarization will

be orthogonal to the pulsar optical polarization. In the case of Sco X-i the

sensitivity is so high that we might be able to detect transient polarization

effects.

PRINCIPLE OF POLARIMETER OPERATION

A Brau crystal operating at an angle of 45 ° acts as a perfect polarization

analyzer over the energy bandwidth characteristic of the Bragg reflection.

This effect can be thought of as a form of coherent scattering through an an-

gle of 90". Since the energy bandwidth of nearly perfect crystals is extreme-

ly small, such crystals make very inefficient polarimeters for stellar X-ray

sources. This llmitatlon can be partially overcome by using mosaic or ideal-

ly imperfect crystals. Such crystals exhibit large reflection over a much

larger energy bandwidth, and they can be used to construct reasonably effici-

ent stellar X-ray polarlmeters. Such mosaic crystals consist of disordered

arrays of very small perfect crystals. Each small crystal is thick enough to

provide strong reflections for photons that satisfy its Bragg condition but

thin enough to cause only small absorption for photons that do not satisfy

the Bragg condition. We can visualize each photon in a polychromatic X-ray

beam as penetrating the mosaic crystal until it encounters a crystal domain

that satisfies the Bragg condition for the precise wavelength of the photon

of interest. That photon is then coherently (Bragg) scattered out of the

crystal. In this way we can understand how a large range of photon wave-
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lengths can be simultaneously reflected by the crystal. The theory of this

effect was developed many years ago by Darwin (1914) and Bragg (1914) who

showed that mosaic crystals can be characterized by a quantity known as In-

tegrated reflectlvlty. This quantity Is defined as follows.

Suppose s crystal is illuminated with radiation from an X-ray source and is

rotated with uniform angular velocity _ to scan from Bragg angle 81 to e 2 and

that Bragg reflection of wavelength X takes place within this range. Let

I(X)dX be the power at wavelength % in the spectral range dX incident on the

crystal, and let R(e,X) be the coefficient of reflection of X-rays of wave-

length _ incident at angle 8 on the crystal. The total reflected energy In

the s"me spectral range, W(X)dX, is given by

02 dOW(X)dl = I(X)dX R(8,X) -_-
91

i= - zO,)dX.nO(X) , (1)
_o

where

_e(x) = R(O,X)dO (2)
01

The quantity AO is the integrated reflectivlty. Since the number of photons

reflected is directly proportional to A0, the most efficient crystals for

Bragg reflection will be those wlth the highest values of AO.

The integrated reflectlvlty of a mosaic crystal Is given in the case of unpo-

larized radiation by the expression derived by Darwin:

A8 = 1 + cos228 N2X3F2r02 (3)

4 sin 20 P

Here 8 is the Bragg angle, B is the absorption coefflc_ent; N is the number

of scattering cells per unit volume, F is the crystal structure factor, that

is, the effective number of scattering electrons per cell, and r0 is the

classical electron radius. A full account of reflectlon by crystals is given

by James (1948). An examination of equation (3) shows that de is maximized In

crystals with well-deflned planes of high electron density, and for scattering

atoms whose photoelectric absorption cross section is sm_ll2compared with the
cross section for coherent scattering, proportional to F r0 .

When polarized radiation is reflected by a mosaic crystal, the angular depend-

ence of the integrated reflectivlty is given by

N2X3F2ro 2 i sin 20

AO - 2B [s--_28 2 (1 + P cos 2¢)] (4)
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Here P is the polarization of the incident radiation, 8 is the Bragg angle,

is the azimuth angle between the plane of incidence and the plane formed

by the incident photon direction and polarization vectors, and the other

symbols were defined above. In the case of a 45 ° Bragg angle, A8 is given

by

N2A3F2ro 2

A8 = 4_ (1 - P cos 2_) (5)

If we envision a Bragg-crystal polarimeter as consisting of a flat crystal

at 45 °, then the detector must have the same area as the intercepted photon

beam [see Fig. l(a)]. Since the signal for even the best crystals and the

strongest sources is quite small, the non-X-ray background associated with

such a large detector would be excessive and would seriously limit the effec-

tlveness of the polarlmeter. The X-ray polarimeter on the Ariel V satellite

is of this type, and it can only be used to study the strongest sources.

We can overcome the problem of a large detector if we recognize that all

presently known X-ray sources are continuum emitters and all models that

suggest polarization indicate that, at most, the polarization would be a

very slowly varying function of energy. In view of this, we can mount the

crystals on a sector of a parabolic surface so that the diffracted rays con-

verge to a small spot that allows us to use a small detector with a small

background counting rate [see Fig. l(b)]. With this construction the focal

spot cannot be any smaller than the size of the crystals mounted to the sur-

face. In addition, the mosaic spread of the crystals also contributes to the

spot size.

STATISTICAL LIMITATIONS

In this type of polarimetry, the angular dependence of the photon signal is

observed as the polarization analyzer is rotated about the llne of sight. In

view of the photon nature of the signal, it can be readily shown that the an-

gular dependence can never be zero; we must aZW_s obtain a positive indica-

tion of polarization. If N signal photons are detected without background

contamination and if the analyzer only accepts one state of polarization,

then it can be readily shown that the distribution of polarization values is

given by

= I
f(P)dP _ NP dP exp(-Np2/4) , (6)

where P is the fractional polarization, which is assumed to be small, and

f(P)dP is the probability of obtaining an apparent polarization in the range

from P to (P + dP) due to statistical fluctuations in the signal. The Io

variance in the apparent polarization is

_P(lo) = _ (7)

Real polarimeters are always plagued with background signals, and they gen-

erally accept some of the orthogonal polarization components. The acceptance
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of the undesired polarization can be expressed as the polarization modulation

factor m for the polarimeter. It is defined as the apparent polarlzation re-

corded with 100-percent polarized incident radiation. In the case of a polar-

Imeter of the rotating type, then it can be shown that the actual polarization

P of a signal of unknown polarization is given by

1 Nmax - Nmin
P - , (8)

m Nma x + Nml n

whereNma x and Nml n are the maximum and minimum signals recorded as the polar-
Imeter is rotated about the line of sight to the source.

In the presence of a background signal and with a polarimeter with modulation

factor m, the 30 or 99.7-percent confidence limit on any measured polarization

is given by

6P(_) "_s [2(s+ B)/T]t/z , (9)

where S is the signal counting rate, B is the background rate, and T Is the

observing time.

THE INSTRUMENT

The OSO-8 crystal panel has a projected area of about 140 cm 2 and contains

about 450 graphite crystals. The panel Is a 30" arc of a parabola of revolu-

tion, and the Bragg angles range from about 40" to 50". With this range of

azlmuthal and Bragg angles the modulation factor is somewhat reduced below

unity. It can be readily shown from equation (5) that a strip of crystals

with 45" Bragg angle but a range A_ of azimuthal angles will yield a modula-

tion m given by

m - _ (10)
A¢

In the case of the 0S0-8 panels, A@ is 30" and m - 0.96, in very good agree-

ment with the laboratory measurements shown in Figure 2.

The detector in the OSO-8 polarlmeter consists of a thin-window, gas propor-

tional counter that utilizes pulse-height analysis, rise-time discrimina-

tion, and anticolncidence techniques to reduce the background. Background

reduction is necessary not only to improve the sensitivity of the instrument

but also to reduce the possibility of false polarization produced by anisot-

roples in the background. The properties of the detector and the crystal

panels are s,,,-,arlzed in Table 1.

The OSO-8 satellite is a spinning vehicle. Two crossed graphite polarimeters

are coaligned with the spin axis and view the sky along this axis (see Fig.

3). The two orthogonal polarimeters not only provide redundancy but also
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allow us to measure the two Stokes parameters simultaneously. This is ex-

tremely important in the case of time-varlable sources. With the 0S0-8 in-

strument polarization will manifest itself as a modulation of the polarim-

eter counting rate at twice the rotation frequency of the spacecraft. The

amplitude of modulation yields the fractional polarization, and the phase,

the position angle. True polarization will lead to antiphase modulation in

the two orthogonal polarimeters while temporal variations in the source will

cause in-phase time variations.

PRELIMINARY RESULTS

Figures 4 and 5 show the pulse-helght spectra obtained from the two 0SO-8

polarlmeters during observations of the strong source 3U 1758-25 (GXb-I). The

first- and second-order reflections centered at 2.6 and 5.2 keV are clearly

visible above the background. The background energy spectrum, shown as the

solid llne in these figures, was obtained when the source was eclipsed by the

Earth. The slightly broader pulse-helght peaks in Figure 5 are due to the

poorer resolution of the second detector as compared with the first. These

spectra, and particularly the relative counting rates of the signal versus

the background, show the success of employing focusing together with rise-

time discrimination and antlcolncldence techniques to achieve background sup-

pression. The background rates are approximately 1 x 10-3 events (cm 2 sec

keV) -I for both detectors.

Figure 6 shows similar spectra obtained from observations of the eclipsing bi-

nary 3U 1118-60 (Cen X-3), both in and out of binary eclipse. Although the

source is weaker than GX5-1, the first- and second-order reflections from the

graphite crystals were clearly observed. The first- and second-order reflec-

tion peaks appear in slightly lower pulse-height channels in the second po-

larlmeter than they do for the GXb-I observations, as the high voltage and

therefore the gain were_at a lower setting.

We have examlned all four data sets shown in Figures 4-6 for evidence of mod-

ulation at twice the rotation frequency of the satellite; i.e., the signature

of polarization. The results for the two observations where the X-ray sources

were in the field of view are listed in Table 2. In all cases, including

analysis of the background data, no evidence for modulation was obtained.

However, due to the limited amount of data available at this time, the sensi-

tivity to modulation is limited. Nevertheless, when combined with the results

of the background data analysis, these results can be used to set upper llm-

its on the polarization of these two X-ray sources at 28 percent for the in-

tegrated emission from Cen X-3 and 12 percent for GX5-1, both at the 99 percent

confidence level. We caution the reader, however, that these results assume

that there are no large systematic background effects which depend on time or

the satellite orbit which might mask a strongly polarized signal. This pro-

viso is particularly relevant to the Cen X-3 observation where the signal-to-

background ratio is approximately unity.
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SENSITIVITYTOPOLARIZATION

Bythe endof November1975wewlll havecompletedobservationsof four of
thebinaryX-ray sources, Cen X-3, Her X-l, Cyg X-l, and Cyg X-3, which are

being discussed at this Conference. The expected sensitivity to polariza-

tion for these sources is listed in Table 3. These estimates are based on

the background rates we have observed and assume that we find no significant

spurious modulation in the background. By this time we shall also have com-

pleted extensive background observations where no known X-ray sources are in

the field of view under a variety of satellite environmental conditions. It

is also worth noting that the sensitivity to polarization for the Cyg X-I

measurement is somewhat optimistic as the source fluctuations are greatly in

excess of those predicted by counting statistics.

The successful launch and operation of a satellite experiment involves the

coordinated efforts of a large n,,mh_r of people. The following llst is by

no means exhaustive, but we would llke to acknowledge the contributions of

Prof. J. R. P. Angel, Dr. J. R. Wang, Dr. J. Toraskar, Ms. D. J. Miller,

Mr. D. D. Mitchell, Mr. I. Rochwarger, M. M. Sackson, and the staff of the

Columbia Astrophysics Laboratory. This work was supported by the National

Aeronautics and Space Administration under contract NAS5-22408. This paper

is Columbia Astrophysics Laboratory Contribution No. 118.
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TABLE 1

Inatruwent Parameters of the 0S0-8 PolarlNeter

First Second
Parameter Order Order

Materlal

Projected geon_tric area

A0

E (keV)

AE (keV)

Windw

Gas composition

Neon

Xenon
Carbon dioxide

Efficiency

Effective area (cm 2)

(a) Crystal Panels

Graphlce (2d m 6.7 _)

2
140 ca

(b) Proportional Counters

2-mll beryllium

620 mm Hg
65

7___s
760

(c) Polarimeters

9 x 10-4

2.6

0.4

0.67

0.169

5 x 10 .4

5.2

0.8

0.53

0.07.5
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TABLE 2

Search for Modulatlon at 2.6 keV

. - , **, • _ .... S§
A -i M _ Proba-_

(counts sec x I00) (%) (o) blli,ty (%)

Ca) 3U 1758-25 (GXS-I)

Counter 1

Counter 2

0.98 3.3 53 0.71 12.0

0.49 1.6 208 0.92 11.7

Average 0.50 1.7 68 0.83 8.4

Counter 1

Counter 2

Average

(b) 3U 1118-60 (C_ X-3)

0.28 3.6 242 0.76 14.6

0.50 6.8 138 0.40 15.2

0.39 5.1 242 0.34 10.5

A is the average count rate.

M Is the detected amplitude of modulation as a percentage of the average.

%_ is the position angle (in this case, relative to an arbitrary reference

point),

_Probabillty of measuring M or greater by chance due to random fluctuatlo_

of the data.

§S is the sensitivity expressed as a percent modulation of the signal.

Modulation at this level would have a 1% probability of occurring by chance.
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TABLE 3

Sensitivity to Polarization of Binary Sources

Minimum Detectable Polarization

First Order Second Order Combined

Source (%) (%) (%)

Cen X-3 5.0 8.7 4.4

Her X-l* I0.2 13.2 8.1

Cyg X-I_ 5.0 12.8 4.8

Cyg x-3s 5.7 12.i 5.3

*Observation time known; source strength estimated.

#Observation time known; Poisson statistics assumed; source

strength estimated.

§Observation time and source strength estimated.
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Figure i. Conceptual diagram of (a) nonfocusing and (b) focuslng Brau-

crystal polarimeters.
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REVIEWOF RECENT X-RAY RESULTS

Discussion

P. Murdln to J. L. Culhane/B. Margon:

Topic: Reality of 22 hr. period in X Per.

When you sample s periodic X-ray source perlodlcally with a satellite

which goes behind the Earth every orbit, may pass through hlgh-backbround

regions, or do other duties every day, then the Fourier power spectrum

of the intensity of the source contains several peaks in a pattern

centered on the source period. The pattern of the peaks in the power

spectrum is an aid to recognising the reality of the periodicity.

3U0352+30 has been observed by Copernicus on six occasions and there is

periodicity recognlsable in the power spectrum of two of these six runsp

at a period of 22 hours and peak to mean amplltude about 15Z. On the

other occasions periodicity of the same amplltude would probablyhave
been seen but wasn't.

F. Winkler to P. Serlemitsos:

What are temperatures of the two thermal components which best fit the

observed spectral data for Cas A?

P. Serlemitsos:

Cas A answer: kT = 0.7 keV and kT - 3.9 keV.
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Her X-I PANEL

John N. Bahcall

Institute for Advanced Study

Princeton, New Jersey 08540

INTRODUCTION

The Hz Kerculis/Her X-I system was the first X-ray pulsar in a binary

system to be optically identified and as such it has been the subject

of many related X-ray and optical investigations. Several basic

properties of this system were understood as an almost immediate result

of the epochal UHURUX-ray observations, the optical identification,

and the early fundamental theoretical papers. Among the properties we

can regard as understood are:

(i) The origin of the 1.7 d period (cause: binary motion);

(2) The origin of the 1.2 s period (cause: rotation of a compact star);

(3) The origin of the X-ray emission (cause: mass accretion onto a

compact star);

(4) The origin of the large optical variations (cause: X-ray heating

of the photosphere of Hz Herculis).

Nevertheless we do not yet have a good understanding of some of the

elementary properties in this now classical X-ray binary. Future X-ray

and optical observations should concentrate, at least in part, on trying

to provide clues for understanding these puzzles. I llst some of the

more obvious incompletely understood phenomena.

(i) The origin of the 35 d period;

(2) The origin of the long inactive periods (seen on historical optical

plates and presumed to occur likewise in the X-rays) - what turns

the X-ray emission on and off;

(3) The nature and origin of the X-ray spectrum and pulse shape; and

(4) The systematics of, and quantitative explanation for, the observed

occasional optical pulsations.

The most fundamental observation that one can anticipate is the intensive

study of Hz Herculis during an X-ray OFF period (extended optical low).
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It will then be possible to measure optlcally reasonably accurately the

e11Ipsoldal llght variations and the projected radlal veloclty of Hz

Herculls providing an over-determined system of equations for fixing the

b_naryparemeters (the t_romasses and the Incllnatlon angle i). One can

then compare the mass of the X-ray source determined In thls way wlth

that suggested by the Berkeley group (using a model for the origin of the

optical pulsations that, however_ does not explain the observed smallness

of the optical pulsations). The monltorlng of Hz Herculls and Her X-I

ought to be done as often as possible, wlth an early-warnlng to other observers

if an OFF period Is discovered, In order not to lose information on an

historical opportunity.

The papers In thls panel concern the basic unsolved problems of the Hz

Herculls/Her X-I system llsted above. Although they do not provide definitive

answers_ the present observations do provide valuable clues and hopefully
point the way toward the correct solutions.
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PERIODIC FLICKERING IN THE OPTICAL SPECTRUM OF HZ HERCULIS

P.L.Bernacca

Asiago Astrophysical Observatory
36012 Asiago (Vicenza) Italy

ABSTRACT

Photometric observations of HZ Herculis in the
ultraviolet with a time resolution of 5 seconds
show the existence of periodic flickering with
a time scale of 115 to 130 seconds. The ampli-
tude modulation is about 3 to 6 percent, larger
than that associated with the erratic white

flickering. The flickering, either erratic or
periodic, occurs, but not always, near orbital
phase 0.5, irrespective of the ON and OFF parts
of the X-ray cycle.

I. INTRODUCTION

The properties of HZ Herculis in the optical region have been most recently
summarized by Bahcall (1975). He has also emphasized the importance of
observations directed to detect light flickering and to extablish its depen-
dence both on orbital phase and X-ray cycle.
Up to date it is accepted only that HZ Herculis flickers non-periodically
with a time scale of 15 to 300 seconds on the basis of dual-channel photome-

try carried out by Moffet, Nather and VandenBout (1974) in white light. It
will now been shown that HZ Her may temporarely also show periodic flickering
in ultraviolet light with a time scale of 115 to 130 seconds of larger ampli-
tude than that associated with the white erratic flickering.

II. OBSERVATIONS

HZ Herculis was monitored at Asiago using a one-channel photometer attached
to the 122 cm Reflector. The response of the photometer is determined by the
EMI 6256/S photomultiplier and a UG2/l-mm filter. The digital signal was

apportioned through a multichannel analyzer and recorded on paper tape for
data processing. A field diaphragm of 22 seconds of arc (") in diameter was
used. Offset guiding allowed to watch continuosly that the target be kept
within the diaphragm. Average seeing at Asiago is about 3" and guidance er-
rors due to atmospheric turbolence were not larger than about 1 mirror image.
Thus, also in bad seeing conditions, when the image could temporarely measu-
re about 6", the target was always well settled on the photocatode.
A comparison star, near HZ Her, was frequently monitored before, after and
in between.

101



Of all the observations, only those obtained in good quality nights and sta-
ble atmospheric conditions have been considered. The check has been easily
made by examining the constancy of the time series of the comparison star.A
signal is here conservatively defined to be constant when the actual disper-
sion is not larger than than the poissonian dispersion by a factor 4 and when,
after removing possible quadratic trend, its spectrum does not show lines with
power exceeding the limit given by the a priori probability of 0.I percent
of having larger or equal power.
The journal of the observations is given in Table I. Headings are self-expla-
natory. Indication of the status of Her X-I during the 35 days X-ray cycle
is based on having assumed that turn on occurred sometime between May 29 and
May 30, 1974. This estimate is in agreement with estimates by Chevalier and
llowaisky (1974) and with information recently provided by Fritz et al (1975).
A duration of II days for the ON phase is assumed.

III. ANALYSIS AND RESULTS

Figure 1 shows the light curve observed on May 29,1974. The ordinates give
the net count rate per channel free from the average sky background. Time is

advancing from the top to the bottom. These runs are ,however, physically

divided by the monitoring of the comparison star. It is evident the progres-
sive increasing of the amplitude of the flickering, starting from run c, until
a stage is reached where quasi-periodic attenuations appear with depths of

about 0.3 mag. The time scale of these features is around 120 seconds.

Runs a and b are typical of a constant signal.

A sim_ar behaviour was already announced by Bernacca (1974) and observed,
independently, by Chevalier and llowaisky (1974). The latter authors made
observations in ultraviolet with an integration time of 8 seconds using a one-
channel photometer. The fact they found the same time scale and, as it will
be seen, comparable amplitude modulation, confirms the reality of the pheno-
menon. It is however opinion of the writer that the constancy of the compari-
son, checked by interrupting the monitoring of HZ Her, is per se evidence of
the reality of the flickering.
The observations shown in Figure 1 were Fourier analyzed to search for perio-
dic components. These indeed begin to show up in run d and are clearly pre-
sent in run e. The power spectrum of run e is shown in Figure 2 where the po-
wer is plotted in units of the average noTse power of about 1540 counts (the
background is included).
The strong line at 128 seconds with its first harmonic at 64 seconds leeds to
folding the data modulo 130 seconds. The recovered light curve is shown in
Figure 3, where we see that the amplitude is about 50 counts on the average
or about 6% when referred to an average signal of about 850 counts (Fig. I)
The same amplitude can, of course, be derived from the power spectrum which
is based on 128 data points.
Chevalier and llowaisky (1974) have reported an amplitude of 3% with tempora-
ry excursions up to 13%. The white flickering is known to be at most 1.6% in
intensity.

Figure 4 shows the light curve on Jun 3,1974. The power spectrum of the
first part (top), in Figure 5, shows two strong lines at 116 and 61 seconds.
Owing to the low resolution of the spectrum, it is not safe to consider them
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as two independent lines and we will consider only the signal recovered by
folding the data modulo 115 seconds (Figure 6). The amplitude modulation is
again about 6%. In the second part of the run dips develop reaching depths of
about 0.6 mag. One may question about their reality. We note however that the
structure of this 4 minutes lasting attenuation has a time scale of about 120
seconds similar to that of the periodic components discussed above and that the
light curve has a smaller variance outside the dips than that associated with
the first part of the run. We finally show the power spectrum of the run obtain-
ed on July 20, 1974 which is typical of that obtained some hours earlier (July
19). The signal was rather erratic on that night with time scale between 30 and
130 seconds. The amplitude associated with the 128 seconds and 30 seconds com-
ponents are about 3.2% and 2% respectively. From the observations of the compa-
rison star we derive a maximum amplitude modulation due to atmospheric scintil-
lation of less than I% in the range of frequenctes examined. During the remain-
ing nights no significant differences were found between HZ Her and the compa-
rison star when allowance is made for atmospheric phenomena.

IV. CONCLUDING REMARKS

It is not the scope of the present note to discuss'in detail the bearing of

this flickering on present theories concerning the mechanism responsible for
this behaviour. We simply conclude with the following remarks, which stem from

considering the present observations together with those of the authors quoted
above.

l.- HZ Her presents sometimes in addition to the erratic white flickering pe-

riodic flickering in ultraviolet light. The time scale ranges between ll5 and
130 seconds. The amplitude modulation, between 3% and 6%, is larger than that

associated with the white flickering.

2.- The flickering either erratic or periodic, has a larger amplitude near

orbital phase 0.5, when present.

3.- HZ Her flickers irrespective of the ON and OFF part of the X-Ray cycle.The

available data are still too sparse to investigate whether the intensity of

the flickering is larger during the ON status. It seems however that the hard
(2-20 KeV) pulsed X-Rays are not the only agents responsible for the heating

associated with the flickering.
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TABLE l
Journal of observations of HZ Herculis

EPOCH OF OBSERVATIONS AT LENGTH ORBITAL PHASE X-RAY

DATE U.T. AT START (sec) (bins) AT MID-RUN CYCLE

1974,May 25 22h 47m 17s l 1024 .ll2 OFF
26 22 34 08 l 1024 .695 OFF
29 21 57 26 5 I024 .459 OFF/ON

Jun l 21 30 57 5 I024 .213 ON
3 21 30 57 5 I024 .389 ON

90l 52 26 5 I024 .436 ON/OFF
July 19 23 09 19 5 I024 .485 OFF

20 Ol 25 I0 5 512 .532 OFF

Aug 12 20 58 03 5 512 .539 ON
17 22 16 04 5 512 .512 ON/OFF
20 20 38 20 5 I024 .246 OFF

1975 Aug 18 23 57 16 2 I024 .824 OFF
27 23 28 46 2 I024 .I06 OFF/ON

Oct 5 19 53 32 2 2048 .964 ON

Fig.l,2,3

Fig.4,5,6

Fig.7
Fig.7
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HER X-I SPECTRAL EVIDENCE FOR A STRONG MAGNETIC FIELD

Elihu A. Boldt, Stephen S. Holt, Richard E. Rothschild

and Peter J. Serlemitsos

NASA-Goddard Space Flight Center

Greenbelt, Maryland 20771

ABSTRACT

The steep high energy cutoff observed in the spectrum for

Her X-I is analyzed in terms of the severely modified

Thomson scattering that dominates the radiative transfer

in a highly magnetized plasma near the surface of a neutron

star. The data are shown to indicate a field of about

101SG near the magnetic poles and the stopping of accret-

i_g matter by nuclear collisions in the neighboring plasma.

INTRODUCTION

From rocket-borne experiments over the last few years and a current experi-

ment aboard OSO-8, we have obtained detailed spectra over a broad band

(1.5-40 keV) for several X-ray binary sources. These vary from the

featureless power-law spectrum seen repeatedly for Cyg X-I (Rothschild et al.,

1975) to the variable spectrum of Cyg X-3, sometimes a black-body but often

more complicated with features such as line emission (Serlemitsos et al., 1975).

However, the particular spectrum that stands out as one that is most highly

ordered is that measured for Her X-l, observed during a rocket-borne exposure

to the source while near inferior conjunction (Holt et al., 1974). This

extremely simple spectrum, shown in the figures, has puzzled us for some time.

With an energy spectral index close to zero and a remarkably sharp high energy

cut-off at about 24 keV, we soon suspected that it must be a rather direct

indication of some basic characteristic of a neutron star and yet perhaps unique

to Her X-I. For example, is this the spectral signature to be expected for

accretion onto a highly magnetized neutron star fed by matter that is freely

falling from the companion star, unperturbed by any significant stellar wind?

Basco and Sunyaev (1975) and Tsuruta (1974) have recently considered this pro-

blem of free-fall accretion onto a magnetized neutron star. They have described

how the beaming of X-radiation necessary to explain the Her X-I pulsar could

arise from the anlsotropy in the scattering process for photons in a highly

magnetized plasma. In this comunication, we show that the energy dependence

of such scattering could also induce a spectral distortion adequate to explain

the sharp high energy cut-off in the Her X-I pulsar spectrum.

MODEL

In the model of Basko and Sunyaev the magnetic field funnels the accreting

matter towards the magnetic poles where free-fall to the surface is stopped

mainly via nuclear collisions (i.e. Coulomb collisions in a highly magnetized

plasma are considered to be negligible). The radiative transfer of the X-rays

produced within this optically thick atmosphere is dominated by Thomson
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scattering. As recently demonstrated (Canuto et al., 1971; Lodenquai et al.,

1974), the Thomson scattering cross-section in a magnetized plasma (_) is

expected to deviate drastically from the field-free cross-section (_o_. If

e is the angle between the magnetic field (H) and the wave vector of the

incident electromagnetic wave, we have, as e _ 0,

(OHlC;o)_+ _ [EI(_ _E)_ + _ sin e 0 (l)

where (+) and (-) refer to the ordinary and extraordinary modes of propagation

respectively, E is the photon energy and _ is the cyclotron energy defined as

: (h/2lT) (e/mc) H. (2)

The important feature of Eq. (i) for this discussion is that, for E<<E_, Thomson

scattering along the field is much less than expected from the field-_ree

cross-section. Therefore, we pursue the suggestion that an unscattered pencil

beam may indeed emerge from well within the optically thick atmosphere near

the poles.

Following Basko and Sunyaev, we consider the situation where the rate of energy

release by accretion varies in the atmosphere as exp(-T/To), where T is the

optical depth measured with respect to the field-free Thomson scattering cross-

section and TO is that particular value of T corresponding to a nuclear mean

free path. With a cosmic abundance of elements T o _ i0, whereas for iron

To _20.

Since the source energy spectrum is expected to be essentially constant up to

about 30 keV for photons Comptonized in the plasma near the magnetic poles of

Her X-I (Basko and Sunyaev, 1975), the spectral structure of the emerging

unscattered beam will be determined mainly by the energy dependence of the

modified Thomson scattering that removes photons from this beam. A good approx-

imation to the spectrum of the unscattered radiation should thereby be obtained

as follows:

dS/dE _ (To)-z 7 _ exp_-(T/To) -T(_H/_o)]dT = [I + To(_H/_ O) _ (3)
O

where S is energy flux and (_H/ao) is obtained from Eq. (i), neglecting sin_0.

RESULTS AND DISCUSSION

In making comparisons of Eq. (3) with our spectral data, we have found that

T O : i0 and EH = i00 keV (i.e. H _ 10_aG) give results that are adequate for

obtaining the behavior characteristic of this effect. The two curves shown in

Figure i, superposed upon the spectral data, correspond to

(aN/dE)+ = (0.15/E) {I+I0[E/(IOO_E)]2} -i (cm2sec keV)-i (4)

where (+) and (-) again refer to the ordinary and extraordinary modes, respect-

ively. As analyzed by Basko and Sunyaev, the ratio of intensity in the extra-

ordinary mode to that in the ordinary mode is expected to increase with photon

energy, being comparable at about i0 keV for the case considered here. The
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data exhibited in Figure (i) show that this behavior may be applicable to the

Her X-I spectrum. The apparent importance of the extraordinary mode at energies

higher than about i0 keV indicated by these data might also account for the

change in pulse profile (Holt et al., 1974) that sets in for this same energy

band. The polarization (electric vector) for this extraordinary mode is normal

to the direction of the magnetic field, rotating in the same sense as the

revolution of an electron in this field (Ginzburg, 1970).

To check the sensitivity of the pronounced spectral effect exhibited here with

respect to the distribution in 7 assumed for the source function, we have also

considered an extreme situation where the source resides exclusively at the

optical depth 7o. The curves corresponding to this are shown in Figure (2),

superposed upon the same data as shown in Figure (i). The expression used for

this computation is

(dN/dE)+ = (O.15/m) exp[-_o[E/_ E)] e} (5)

where the curves shown in Figure (2) were evaluated _or To = i0 and _ = 120

keV. The results obtained for this case are qualitatively the same as those

obtained for the distributed source model used for Eq. (4). We conclude that

the spectrum of the emerging unscattered beam depends mainly upon To and EH,

and that the detailed structure of the source with respect to T plays a minor

J v_role. Mence, the spectral shape w= L_=uJg_ f:r ll=r _ -==r "-_^_ ..... __.... _"

is likely to be a feature inherent to the underlying neutron star (i.e. deter-

mined by the surface magnetic field strength and nuclear collision length near

the magnetic poles), rather than being a direct indicator of the accretion pro-

cess itself. Specifically, we infer that the magnetic field at the poles is

about lO_SG and that the nuclear collisions in the nearby plasma are probably

not dominated by iron. Ruderman (1975) has pointed out that the field near the

neutron star's surface at the poles could be considerably larger than the pure

dipole value and that the accretion process prevents the formation of an iron

crust.

Since Thomson scattering in a magnetized plasma appears to severely surpress

the spectrum of the Her X-I pulsar emission at E _ 24 keV, we expect that any

X-radiation at higher energies might not be pulsed. A balloon-borne experiment

for observing hard X-rays from Her X-I (lyengar et al., 1974) gives an upper

limit of 10% for the pulsating component in the bandwidth 20-45 keV whereas our

observation at the lower energies considered here indicates that most of the

emission is from the pulsar.
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Fig. 2 The same spectral data as in Fig. i. The dashed and solid curves were
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INTENSE SOFT X-RAY FLUX FROM HER-1

R. C. Catura and L. W. Acton

Lockheed Palo Alto Research Laboratory

3251 Hanover Street

Palo Alto, California 94304

ABSTRACT

An intense flux of soft X-rays extending up to at least

1 keV has been observed from Her X-1. If the soft X-ray

intensity is corrected for interstellar absorption the

luminosity between 0.16 and 1 keV is comparable to

that from 2-10 keV. The soft X-rays are modulated with

the 1.24 sec period observed at higher energies but are

approximately 180 ° out of _lase with the high energy

flux. These results confirm the conclusions of Shulman

et al. (1975) and extend the detection of this flux to

higher energy, a different binary phase and to a time

19 periods (of the 35 day cycle) later. These observations

suggest that this soft emission is a sta0ie 1'eature

in the spectrum of this source during its X-ray "on"

state and that this emission is local to Her X-1.

INTRODUCTION

The X-ray spectrum of Her X-1 was observed in the energy range from 0.16

to 6 keV during a rocket flight at 0919 UT on 3 February 1975. Some

results obtained from these data have been published (Catura

and Acton, 1975) and will only be summarized here. Newly

reduced spectral data in the range 0.5-2 keV and results on the

1.24 sec light curve of Her X-1 will be discussed.

The rocket observation was at a binary phase of 0.18, approximately 2

days after X-ray "turn-on", relative to the 35-day cycle of Her X-1.

The primary instrument was an X-ray reflector (Catura and Roethig, 1975),

focussing in one dimension, with three proportional counters behind aper-

tures at its focus. These apertures defined fields of view of O.1 ° x 9 °

for one detector and 0.23 ° x 9° for the others. The reflector system

covered the energy range from 0.16 to 2.2 keV and was complemented by a

collimated proportional counter covering the range 0.75 to 6 keV. This de-

tector had an open area of lO0 cm 2 and two dimensional collimation of

2 ° FWHM. During the o0servation the rocket performed a 1 ° scan over Her X-1 at

a rate of 0.02 ° s -1.
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RESULTS

Data from the primary detection system are shown in Figure I where

counting rates in two energy intervals are plotted throughout the scan

for each of the three detectors. At the beginning of the scan, Her X-1

was already within the field of view of detector 3. As the scan pro-

gressed, X-rays from Her X-1 were focussed successively into detectors

2 and 1 as indicated by their increase in counting rate. The calculated

response of these detectors to a point source of X-rays is shown by the

profiles in the 0.16 - 0.28 keV plots for these detectors. Nearly 7_

of the X-ray detected from Her X-1 by the reflector system fall within

the 0.16 - 0.28 keV band.

Her X-1 remained within the field of view of the collimated proportional

counter for a period of 57 s. Spectral data from Her X-1 are shown in

Figure 2 for both the reflector system and the collimated proportional

counter. These data represent observed fluxes with no correction for

X-ray absorption by interstellar matter. The solid line in Figure 2

indicates the result of a least-squ_res fit of a power-law function

to the data above 1 keV. The spectral index of this function is 1.23

.14, somewhat larger than the values near 1.O obtained by Giacconi et al.

(1973)_ Ulmer et al. (1973), Holt et al. (1974) and Shulman et al. (1975).

It is clear that the data points at low energy fall substantially above

the extrapolation of the best fitting power law, indicating the presence

of a soft component in the spectrum of Her X-I. It is possible that

this component also contributes to the flux at 1.5 keV and is responsible

for the large spectral index obtained in the present analysis. Sh_n

et al. (1975) have also detected a large flux of soft X-rays from Her

X-I but do not observe this component to be appreciably enhanced above

0.7 keV. The soft component of X-ray emission extends to somewhat

higher energy in our observation.

The energy flux between 2 and i0 keV, as calculated from the power law

function shown in Figure 2, is 10-9 erg cm -2 s -I while the flux between

0.2 and i keV in excess of this power law is 2 x i0 -lO erg cm -2 s -I.

The data of Heiles (1975) and Tolbert (1971) indicate a hydrogen column

density of N 5 x 1020 cm -2 in the direction of Her X-I. If the soft

X-ray flux is corrected for absorption by this interstellar matter

using the cross sections of Brown and Gould (1970), the data point at

0.25 keV will fall above the power law function in Figure 2 by a factor

of 30. The corrected energy flux between .2 and i keV in excess of

the power law is then 7 x i0 -I0 erg cm -z s -±. This is comparable to

the flux from 2-10 keV, a result which confirms the observations of

Shulman et al. (1975). Since the present observation and that of Shulman

et al. (1975) are separated by nearly two years, these results suggest

the intense soft flux may be a stable feature in the X-ray spectrum of

Her X-1. It should be noted, however, that this large flux has so far

been detected only in the X-ray "on" portion of the 35-day cycle.
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Shulman et al. (1975) have summarized the evidence which suggests that

this flux does not persist at the same intensity into the "off" period.

Observations presented at this symposium by Heise of the Space Research

Center in Utrecht, and also by Henry of the Naval Research Laboratory

have detected soft X-rays from Her X-1 during its "off" state but the

intensity of this emission is more than a decade below that observed

during the "on" period.

In a preliminary analysis, the data acquired in the range 0.16-6 keV have

been divided into four energy intervals and folded modulo 1.2375s. The

resulting light curves are shown in Figure 3 and exhibit pulsations

at all energies. The light curve in the highest energy interval is similar

to those observed previously by Shulman et al. (1975), Holt et al. (1974)

and Doxsey et al. (1973). As the energy decreases, however_ a phase shift

occurs such that pulses between 0.16 and 0.75 keV are _ 180 v out of phase

with respect to pulses in the 1.25 - 6 keV range. This observation was

made at a binary phase of 0.18. A similar shift in phase at low energies

has been reported by Shulman et al. (1975) at a binary phase of O._7.

If the soft X-ray flux originates in the atmosphere of Hz Her, the binary

companion of Her X-l, by reprocessing of hard X-ray pulses, particular orbi-

tal parameters are required to produce similar phase shifts in the two

observations. More likely, the observations indicate relative pulse-phase

of the hard and soft X-rays is independent of binary phase and the soft

emission is local to Her X-1.

We have fitted the flux between 0.25 and 1.O keV in excess of a power law

to a function describing blackbody emission. If the power law of Figure 2 is sub-

tracted and the residual flux corrected for interstellar X-ray absorption equiva-

lent to a hydrogen column de_slty of 5 x lO 20 cm "2, the resulting black-
body temperature is 1.1 x lO K. An upper limit to this temperature of

1.4 x lO ° K is obtained by neglecting the interstellar absorption and subtract-

ing a power law with spectral index of 1.O which has been normalized

to the data above 2 keV. This temperature is a conservative upper limit

as experimental errors, which might increase the derived temperature,

are considerably smaller than the effect of totally neglecting interstellar

absorption.

As discussed by Catura and Acton (1975), it is unlikely that the soft X-rays

come from the 1.3 M@ companion of Hz Her via blackbody emission because

the surface area of this neutron star is far too small if the source is

as distant as 2 kpc (Bahcall, Joss and Avni, 1974). This has also been

pointed out by McCray and Lamb (1975) who discuss a model where the soft

X-ray emission originates in an optically thick ring of gas at the

Alfv_n surface. This gas ring is heated by absorption of the hard X-rays

and has sufficient surface area to produce the observed emission. Their

model can also qualitatively account for the 180 ° phase shift between

the soft and hard X-rays.
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SOFT X-RAYS FROM HER X-l DURING THE "OFF" PHASE*

G. Fritz, S. Shulman, and H. Friedman
E. O. Hulburt Center for Space Research,

Naval Research Laboratory, Washington, D. C. 20375

and

R. C. Henry, A. F. Davldsen, and W. A. Snyder
Department of Physics

The Johns Hopkins University, Baltimore, Md. 21218

ABSTRACT

Weak 0.28-k_ radiation has been observed

from Her X-l 5 days before turn-on in the
35 day cycle. The observations were made
from an Aerobee rocket at 0500 UT 1974

September 7. The 0.28-keY intensity is about
1/25 that observed during the "on" phase. Some
evidence for x-rays above i keV is also present,
and it is possible that the spectrum is
different only in intensity from the spectrum
in the "on" phase. The radiation may be
x-rays from the vicinity of the neutron star,
scattered by ionized material in the inner
accretion disk, or may be thermal radiation
from the inner accretion disk, or both. No
evidence for pulsation is present in the 0.28-
keV radiation, but the upper limit on pulsation
is not very restrictive.

INTRODUCTION

Shulman at _ (1975) have presented evidence for an
intense flux o-_x-rays at energies below I keY from Hercules
X-l. At the time of observation, the source was approxi-

mately 3 days past the start of the "on" portion of the 35-
day cycle, and the binary system was at phase 0.57 (0.00
is the center of the x-ray eclipse). The low energy flux

was pulsed with the i_24 period, although the pulse profile
dlfferedmarkedly from that at higher energies. Catura
(this symposium) has confirmed all of the essential features
of the observation.

A motivation for the search for low-energy (41 keY)

x-rays was the idea (Avni et al. 1973; Pringle 1973) that a

*Read by R. C. Henry
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steady low-en_rgy flux could heat the primary star and
produce the 1.7 optical modulation that persists in HZ Her
throughout the "off" portion of the 35-day x-ray cycle.
However, Shulman et al. (1975) cited a number of observa-

tions which indic_'{et--6_at the strong low-energy flux which

they observed is not present during the "off" phase.

In particular, they reported a new observation made
during the "off" period, preliminary analysis of which

yielded an upper limit of I0 percent of the soft flux
observed during the "on" phase. The observation was made

from an Aerobee rocket, at 0500 UT 1974 September 7. More
detailed examination of these rocket data has revealed that

Her X-I actually was detected, at about 4 percent of the

intensity previously observed during the "on" phase. This
paper gives the details of this detection.

THE OBSERVATION

The Aerobe_ rocket carried two proportional counters,
each of 1200 cm z effective area. Each had a 2-_ Kimfol

(polycarbonate) window, and was sensitive in the energy

ranges 0.18 - 0.28 keV and 0.6 - I0 keV. Each used PI0
gas (90% argon, 10% methane). One counter viewed the sky

through a mechanical collimator which gave a circular field
of view with 5 ° full-width at half-maximum (FWHM) trans-

missions, while the other had a collimator that was identical

except that the FWHM was only 3° . The two collimators

were pointed in the same direction to within 0.2%.

The payload of the rocket was pointed during the
flight by an inertial attitude control system, used in con-

junction with an optical star tracker. The star _ Her was

observed just before the observation of Her X-I, and
aspect photographs indicate that both detectors were

pointed approximately 15' away from the x-ray source during
a 40 s hold, an error which is negligible compared to the

aperture of the mechanical collimators.

The sequence of maneuvers is shown in Figure i. The
detectors were initially pointed perpendicular to the

zenith. They were then rapidly scanned to ? Cyg, which was
used to remove the errors in the attitude control system,

and then to Cygnus X-3 which was observed for 44 seconds

(Shulman, et al. 1975). Then a complicated series of
maneuvers scanned the detectors through 3U2129+47,

3U2052+47, SS Cygni, and Cygnus X-6 (Davidsen, et al. 1975).

Then Cygnus X-2 was observed for 18 seconds (Sn_er--_-et al.,
1975), following which the Cygnus Loop was observed, _'nd

the detectors were scanned through Cygnus X-I to _ Herculis.
Then Her X-I was in the field of view for 61 seconds.

After this observation was completed, the detectors were

scanned toward the zenith, and then back through Her X-I
toward the horizon, by which time the rocket was quite low
in altitude.
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The count rate in the 3" FWHN detector over the energy

range 0.I to 10 keV is shown in Figure 2 for virtually t_
whole flight. Callbrations, consisting of placlng an Fe
source briefly in the field of view of each detector, were

made twice during the flight. For the 3" F_AN detector,
the gain at 5.9 keV changed by 13_ between the two calibra-
tions. This change was assumed to occur at a linear rate
throughout the flight. One of these calibrations took

place about i0 s before the start of the Her X-I observation.
At low energies, near 0.28 keV, the detector system is not
linear, and a gain correction has been made to compensate
for this effect also.

The time of observation was 5 days before predicted
x-ray turn-on in the 35-day cycle, and the binary phase of
Hercules X-I was 0.42. Thus, the neutron star is not
eclipsed by HZ Her, but, on the basis of previous observa-
tions_ no x-rays should be seen.

Many celestial x-ray sources contribute to the data
presented in Figure 2, but there is no clear evidence for
x-rays from Hercules X-I. When the data for the lowest-
energy channels are segregated, however, clear evidence
for detection of Her X-I appears. Figure 3 is identical to

Figure 2 except that just the channels which contain only
counts due to 0.18 to 0.28 keV photons are summed. Figure 3
is dominated by the Cygnus Loop (off scale). Data taken
before the Cygnus Loop were at low galactic latitude,

while after the Cygnus Loop, the data were taken at high
galactic latitude where the 0.2_ keV count rate is ex-

pected to be higher (Davldsen, e__ttal., 1972), as is seen.
However, the x-ray intensity at"_h_-_osition of Her X-I

itself is about 307_ above that at neighboring regions.

The precision of the coincidence of the change in x-ray

intensity with the detector's arrival at, and departure
from, the position of Her X-l, together with the narrowness
(3* FWHM) of the field of view of the detector, leads to

the conclusion that 0.28 keV x-rays have been detected
from Hercules X-l during the nominal "off" state.

Figure 3 also shows the internal background level
that was measured (for 15 seconds) during the up-leg of

the rocket flight. The data in the figure suggest that
until about 100 seconds (when the rocket was at an altitude

of If2 km), terrestrial atmospheric absorption affected

the 0.28 keV x-ray intensity. On the down-leg, the
rocket had reached an altitude of 120 km at 380 seconds,
when the zenith distance of the direction of observation

was 52 °. This predicts that the 0.28 key intensity should
be 0.81 of its value outside the earth's atmosphere,

which is consistent with Figure 3. Atmospheric attenuation
should then increase rapidly, both because the rocket is

losing altitude and because the direction of observation
is rapidly approaching horizontal. The scan path from 383

129



to 394 seconds passed through Hercules X-l, but the object
is not seen, presumably because of the low rocket altitude

and the very short observation time.

SPECTRUM OF THE X-RAYS

The spectrum of the x-rays from Hercules X-I was

formed by subtracting the normalized average spectrum

observed between 302 and 309 seconds, and between 372 and
382 seconds, from the spectrum obtained during the 309 to

370 second period, when Her X-I was observed. The result

for the 3 ° FWHM detector is shown in Figure 4 (the 5"
FWHM detector yields similar results). The error bars are

Tla , and include only_/'g statistical errors in the data
and background. Hercules X-I was clearly detected at 0.28

keV, and probably was detected at somewhat higher energies.

A pure thermal brems_trahlung spectrum, attenuated by a
5.0 x i0 gU atoms cm "z column of hydrogen and a "cosmic-

abundance" mixture of heavier elements (Shulman et al.
1975), was folded through the efficiency and reso_ut-_n of

the proportional counter, following the method of Meekins

et al. (1969) and using a fitting program developed by
D. Yentis. This program allows a number of options in the

automatic search for a best-flt spectrum, and in the

present case, the hydrogen column density was fixed at the
value of Shulman et al. (1975) and then the program adjusted

the thermal br_mss'Erahlung temperature and the amplitude,

for minimum ×z. The resulting2temperature was 2.0 x i0 o °K.
The fit, which has a reduced X of 2.5, is not very satis-

factory. In particular, there is quite clear evidence for

an excess of x-rays at the highest energy of detection,
I to 3 keV.

The spectrum which Shulman et al. (1975) found to

give a good fit to the x-ray data-'dur_ng the "on" phase

involved thermal bremsstrahlung plus a harder component.
These data, and the fitted spectrum, are shown in Figure 5.

At energies above 2 keV, the power law dominates, and the
best-flt value of the photon number spectral index, -I.0 ±

0.2, agrees quite well with that obtained by Holt et al.

(1974). The data below i keV are fitted reasonably well

by adding a thermal bremsstra_lung component (no lines)
with a temperatureof 1.4 x_0 ° "_. An interstellar hydrogen

column density of 5.0 x I0 zu cm "_ was assumed.
The existence of a hlgh-energy excess in the present

data suggested the possibility that the present "off"-
phase spectrum might be identical to the "on"-phase spec-

trum, but simply reduced in intensity. This hypothesis
is tested in Figure 6, where the fitted spectrum of Figure

5 has been reduced in intensity by a factor of 25.0 and

is compared to the data of Figure 4, that is, the present
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data. Agreement is clearly better than the agreement that
was obtained in Figure 4 between the present data and a
pure thermal bremsstrahlung (× 2 per degree of freedom of

1.9). Clearly, however, the data are not of sufficient

quality to confirm the hypothesis with any great degree of
certainty. We adopt, then, simply as a working hypothesis,
the idea that the spectrum of Her X-I during the "off"

phase is the same as during the "on" phase, but reduced

about a factor of 25 in intensity.

In this connection we note with great interest Dr. J.
Heise's report at this conference that 0.28 keV x-rays

have been detected at times during the "off" phase of Her

X-I by an experiment aboard the Astronomical Netherlands
Satellite (ANS). Also clearly of great interest is Dr. K.

Pounds' report at this conference that Ariel V has detected

Her X-I in the 2-20 keV energy range at approximately full

strength at a time that _s halfway through the "off"
phase. Clearly all of these observations indicate that

sensitive observations will ultimately provide a great
deal more information regarding the origin and character

of the 35 day period associated with Hercules X-I.

LACK OF PULSATION OF THE X-RAYS

Shulman et al. (1975) found that the strong 0.28 keV
flux which th_o_served during the "on" phase was pulsed

with the 162378 period, but that a phase shift occurs with
respect to the pulses at higher energy. The pulsed fraction

at 0.28 keV was only i0 to 20%, compared to about 50% in
the 2 to i0 keV band. The present data unfortunately in-

volve too few counts to detect a I0 to 20% pulsation if

present. Simulations similar to that reported by Shulman

et al. (1975) lead to an upper limit of 50% on the pulsed
t'_act-_on of 0.28 keV x-rays which would have been detected
with 907_ confidence.

DISCUSSION

The fact that a weak 0.28 keV flux is present, at

least at times, during the "off" phase of Hercules X-l,

does _ot provide any obvious answer to the question of why
the 1.7 optical modulations persist in HZ Her during the

"off" phase of the 35 day x-ray period. Rather, it raises

the further question of the place of origin of the low-

energy flux. Thorne and Price (1975) have shown that

heating of the inner part of the accretion disk by x-rays
from near the collapsed object will cause the inner part
of the accretion disk to expand in the direction perpen-

dicular to its plane. A popular model for the occurrence
of a 35-day cycle in Hercules X-I is the precession of the
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accretion disk with this period. During part of the

precession cycle, the neutron star and all parts of the

accretion disk are visible from earth, but during another

part the accretion disk is viewed nearly edge-on, and the

neutron star and the innermost portions of the accretion
disk are not visible, or at least not directly visible. If

the inner part of the accretion disk has a scale height

above its plane which is substantially greater than this
scale height for outer parts of the accretion disk, however,
it would be visible even if the accretion disk were viewed

exactly edge-on.
There are difficulties, however, with this model.

Thorne and Price (1975) suggest that it is much higher

energy photons that originate in the inner, thermally
swollen, part of the accretion disk, while lower energy

photons originate in the outer part. If the accretion disk

is viewed edge-on, this outer part, which is optically thick
in this model, would not be seen.

The apparent fact that the spectrum of the x-rays
observed during the "off" phase is not a purely thermal

spectrum, also suggests that a new model is needed. We

have seen in Figure 6 that the spectrum that is observed
during the "on" phase fits the data obtained during the

"off" phase rather well, if the intensity is substantially

reduced. This suggests that the mechanism of reduction of

intensity is scattering by free electrons.

CONCLUSION

The work of Catura (1975), of Brinkman and Heise

(1975), and of Pounds (1975), together with that of Shulman

al. (1975), and that reported in this paper, lead to
"_nclusion that a large amount of further observational

work remains to be done on the system HZ Her-Her X-I in

the x-ray part of the spectrum, particularly during the
nominal "off" portion of the 35-day x-ray cycle. The

suggestion by Pounds (1975) that Her X-I may turn on fully
in the middle of each "off" cycle is particularly in-

triguing. The spectral behaviour during the "off" phase

suggests that the observed x-rays are being scattered by a
very hot thin ionized cloud surrounding the inner part of
the accretion disk of the neutron star.
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The fit is considerably better than that for pure
thermal bremsstrahlung in Figure 4, and this

suggests that the spectrum of Hercules X-I may be

the same during its "off" phase as during its "on"

phase, except for a reduction in intensity. This
in turn would imply that the reduction in inten-

sity during the noff" phase is not due to simple

absorption of the X-rays, which would affect the
lower-energy X-rays more severely.
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TIMING OF PULSATING SOURCES*

F. K. Lamb T and D. Pines

Department of Physics

University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

and

J. Shaham

Racah Institute of Physics

Hebrew University

Jerusalem, Israel

ABSTRACT

torques and find that the observed variations in the pulsation periods of the

compact X-ray sources Cen X-3 and Her X-I could be caused by short time scale

fluctuations in the accretion torques acting on the neutron stars. The sizes

and rates of the required fluctuations are consistent with current accretion

models. Such fluctuations can cause period variations either (a) directly,

by causing a random walk of the star's angular velocity or (b) indirectly,

by exciting a long-period mode of the neutron star, such as the Tkachenko

[,ode of the rotating neutron superfluid. Should torque fluctuations be

confirmed as the cause of the period variations, X-ray timing observations

may yield valuable information about the flow of accreting matter into neutron

star magnetospheres. We draw attention to other phenomena in compact X-ray

sources and cataclysmic variables which may be caused by fluctuating mass flow

rates.

I. INTRODUCTION

The pulsating compact X-ray sources Her X-I and Cen X-3 are believed to

be rotating magnetic neutron stars that are accreting matter from a close binary

companion (for recent stamnaries of the evidence favoring such an interpretation,

see Pines 1974; Rees 1974; and Lamb 1975a,_ . In this picture the pulsation

period, P, is the rotation period of the neutron star crust.

Unlike pulsars (which spin down), these neutron stars are expected to

spin up as a consequence of the torque exerted by the accreting matter (Pringle

and Rees 1972; Lamb, Pethick, and Pines 1973). The Uhuru observations (Giacconi

1974) reveal significant variations in the pulsation periods of both sources,

as shown in Figure i. As expected, both show a net decrease in period, amounting

to some 6 _sec over 14 months in the case of Her X-l, and some 3 msec over 21

months in the case of Cen X-3; this overall trend toward decreasing period is

indicated by the straight lines in the figure. Elsewhere in these proceedings

Tuohy reports more recent data on Cen X-3 frc_ Ariel-5 which show that the de-

Research supported in part by the National Science Foundation through grants

GP 37485X, GP 41560, and MPS 75-08790. A longer version of this report is being

submitted to the Astrophysical Journal.

TAlfred P. Sloan Foundation Research Fellow
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crease in period of Cen X-3 has continued at about this same rate up to January,

1975.

On the other hand the period changes are not steady in either source, the

period sometimes increasing as well as decreasing from one month to the next. One

can interpret the data on both sources as due to a steady decrease in pulse period,

characterized by the time scale T_ = IP_I, on which is superimposed a quasi-

sinusoidal variation in pulse period of relative magnetude (AP/P), characterized

by an apparent period, P_ _. In Table 1 we list the values of these parameters

which have been estimate_romthe data in Figure 1.

What is the cause of these quasi-sinusoidal period variations? In the case

of Her X-I Brecher and Wasserman (1974} have suggested that the HZ Her-Her X-1

system is actually a triple, and that the variations are Doppler shifts due to

motions caused by the third, otherwise undetected, member of the system. Here

we suggest a different interpretation, namely that they are a direct reflection of

variations in the angular velocity of the neutron star crust caused by fluctuations

in the accretion torque. In order to account for the observed variations, the

accretion torque must change by a factor of _ 3-6 on a time scale of a few months,

in Her X-I, or about a year, in Cen X-3. Moreover, Figure 1 clearly shows that

the sign of the torque must sometimes be reversed in Her X-I. While the X-ray

flux from Her X-1 (and, by inference, the mass accretion rate onto the neutron

star) is known to vary on time scales of several months (P. Boynton, private

communication), the size of these variations is at most a factor _ 2, and there

is as yet no evidence that they are in any way correlated with the observed period

variations. Therefore this interpretation requires changes by a large factor in

the angular momentum per unit mass accreting onto the star, and in some cases a

reversal in its sign.

How can such changes come about? A change in the sign of the accretion torque

could in principle be caused by a large-scale change of the matter flow-pattern

in the binary system, such as a reversal in the sense of rotation of the accre-

tion flow about the neutron star (see the discussion of disk reversals by Shapiro

and Lightman 1975}. However, the evidence that Her x-l, at least, is fed by Roche

lobe overflow is overwhelming(cf. Lamb 1975b) and such a rotation reversal there-

fore appears exceedingly unlikely in this source. On the other hand, the coupling

between the accretion torque and the star occurs at the Alfv_n surface, where

changes in the accretion flow pattern leading to ejection of a smell fraction of

the inflowingmatter could cause a reversal in the net torque exerted by the flow

(Davidson and Ostriker 1973; Lamb, Pethick, and Pines 1973; Lamb and Pethick 1974).

If Her X-I and Cen X-3 are rotating close to, but slower than their equilibrium

spin rates, fluctuations in the accretion flow at the Alfv_n surface will produce

sizeable fluctuations in the accretion torque which can, for a time, lead to spin

down, even though the torque will on average lead to spin up.

In this report we show that the observed period variations in both Her X-1

and Can X-3 could be caused by relatively short time scale fluctuations in accre-

tion torques due to changes in the flow pattern near the Alf_n surface, and that

the sizes and rates of the required fluctuations are consistent with current

accretion models. The observed X-ray intensities display substantial fluctuations

over time scales from seconds to days (Doxsey et al. 1973; Giacconi et al. 1973;

Holt et al. 1974; Giacconi 1975) that suggest corresponding fluctuations in the spin
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Table I

Observed Period Varlatloms in Her X-I and Cen X-3

Parameter* Her X-I Cen X-3

T(months} 14 21

P (sec) 1.24 4.84

T s (years} 3x105 3x103

AP/P _I0 -6 _i0 -4

P (months) _ 9 _20
var

T is the duration of the observations; P, the pulse

period; Ts, the mean spin up time; AP/P, the relative

amplitude of period varlatlons_ and Pva ' the
r

characteristic time scale of these var_atlons.
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up torques acting on the two stars. There are as well strong theoretical grounds

for believing that accretion is an unsteady process (Lamb 1975b). We show that

torque fluctuations could cause period variations of the observed size either.(a)

directly, by causing a random walk of the star's angular velocity (shot noise I)

or (b) indirectly, by exciting a long-period mode of the neutron star (such as the

Tkachenko mode of the rotating neutron superfluid}.

zl. MOD_L _LCUmTIO_S

a) Shot Noise

We have studied the response of a rotating neutron star to fluctuating torques

and find that such torques could account for the period variations observed in

Her X-I and Cen X-3. To demonstrate this, we assume that the accretion torque

may be written N(t) = N O + 6N(t), where N O is a constant and the fluctuating part,

_N(t), results from a stationary random process (_N itself need not be stationary,

however). Although the assumption that _N(t) results from a stationary process

may not be valid on very long time scales (the _ 10-20 year variations observed in

HZ Her may be associated with an interruption of the accretion torque, for example),

it would seem a reasonable approximation on the time scale of current observations

(_ 1-2 years). We further assume <_N(t)> = 0, where the sharp brackets denote a

time average.

With these assumptions there are still an infinite number of different types

of torque noise processes one might consider. Here we discuss two specific models

which are plausible in the context of accretion torques:

_Nl(t) = _ _L i _(t-t i)
i

corresponding to a sequence of steps

_N 2(t) = _ _N i 8(t-t i)
i

in the angular momentum of the star, and

C1)

(2)

corresponding to a sequence of steps in the torque acting on the star. The

first model can.be described as white noise in the torque N and the second, as

white noise in N. Jumps of type (I) could result, for example, from clumping of

the matter crossing the Alfv_n surface (Lamb et al. 1973). Jumps of type (2)

could result from steps in the rate at which matter crosses the Alfv_n surface.

Fluctuations of both types would then be seen as variations in the X-ray intensity.

In order to clarify the difference between the two types of fluctuations, consider

a particular event at time t. that includes both: suppose that after a time

T 1 << T a fraction 6Nil of _e original torque jump _N i has died away, but some

fraction, _Ni2, remains ($Nil + _Ni2 = _Ni)- One would then have both types of

noise, with _L. _ _NilT 1 and _N i _ _Ni2 (in this example the two are correlated,
and there woul_ be interference between them). Physically, the torque in a type

(I) process returns to the reference value N 0 after each event. In a type (2)

noise process, on the other hand, each step 6N. must persist for at least as long1
as the observing period, although it may disappear after a longer time; in this

type of process there is no reference torque. In the limit of infrequent torque

jumps of large size, this description in terms of noise processes gives the same

result as slow but very large amplitude changes in the torque. (As we shall see,

torque jumps % i/i0 the mean torque, for example, occuring % i0 times per second

end lasting _ 104seconds, would suffice to explain the observations; alternatively,

1
We use the term 'shot noise' here to refer to any stationary noise process.
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if only _ 10 -2 - 10 -3 of each such jump persisted for > 3T % 108 seconds, this

would also suffice. )

In order to calculate the effect of N(t) on the angular frequency of the

neutron star, we adopt the two-component model, in which the solid outer crust, the

solid core (if any), and the charged particles in the liquid interior of the star

are assumed to rotate together at angular frequency n, as a result of the strong

magnetic fields which thread the stellar crust and core, and are weakly coupled

to the superfluid neutrons (Baym et al. 1969). If we neglect any low-frequency

modes, the equations of motion of the system are

and

I
c

Ic6 = N - _- Cn-nn)

c

I

I _ = T-c Cn_nn) l
n n

c

(3)

(4)

where I and I are the moments of inertia of the crust and the neutron super-
c

fluid, respectlvely, and n is the superfluid angular velocity. The crust angular
n .

velocity then obeys the equatlon

d2n 1 dn 1 dN N

+ dt + I-_ (5)
dt 2 T dt _c

where T = _nTc/I is the crust-core coupling time, and I = I n + I c.

A solution of (5) is

where _0 and _0

n(t) : _o + not + an(t) (6)

are constants which satisfy

Ts _ n0/_0 = In0/N 0 (71

and _n(t) obeys (5) with N(t} replaced by _N(t). A theoretical estimate of T
s

may be made by calculating the angular momentum flux carried by particles crossing

the Alfv_n surface (Lamb et al. 1973). The results are in good qualitative agree-

ment with the values for Her X-I and Cen X-3 cited in Table i.

Assuming _N(T) = _N(0) and _n(T) = _n(0), _(t) can be calculated from _N(t)

using discrete Fourier transform techniques. If T is the duration of the observa-

tions, the bulk of the response noise power lies in the frequency range de % _/T.

Thus the signature of this type of noise is quasiperiodic behavior, with an apparent

frequency, 2_/T, determined by the length of the data (cf. Groth 1972, 1975;

Boynton et al. 1972).

In the limits of observing periods long and short compared to the crust-core

coupling time, the total mean square fluctuation (An) 2 = <(_)2> T is given by

/_q 2 2 R182T 2

(_NI = _ 12 (_s } (s)
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for model (1) and

(A_. 2 2 R272T (_) 2--_J = n 720
N2 S

(9)

for z_del (2). Here

= _I/Ic, T << r
n

_-i , T >> T ,

(I0)

a_nand R, are the average rates of angular momentum and torque _u_s, respectively,

d we h_ve introduced the dlmensionless constants _ = RI<(_L _ ) > -2/N 0 and

y - <(_Ni52>_/N0 to characterize the sizes of the torque fluctuations.

b) Tkaohenko Oscillations

If there are low-frequency modes of the neutron star which can be excited by

fluctuations in the accretion torque, the response of the star will generally

differ from (8) and (9}, with some of the noise power concentrated near the

resonance frequencies of the modes. One set of low-frequency modes which might

be excited are Tkachenko oscillations of the rotating neutron superfluid.

Tkachenko modes are oscillations of the uortex lattice which exists in a

rotating superfluld. They obey a sound-wave-like dispersion relation at low

frequencies, with phase velocity in a neutron superfluld (Tkachenko 1966; Ruderman

19705

1 %
CT k = _ (h_/2mn) , (115

where m is the neutron mass. Recently, Tsakadze and Tsakadze (1973) have reported

excitation of Tkachenkomodes in rotating superfluid helium in an experiment in

which a vessel containing superfluid helium was suddenly spun up. The success

of this experiment suggests that under laboratory conditions, there exists a liquid

boundary layer which strongly couples the container to the rotating superfluid.

If the outer crust of a rotating neutron star is similarly strongly coupled

to the interior neutron superfluid, fluctuating accretion torques may excite

Tkachenko oscillations in the interior. The lowest frequency such mode, with a

wavelength, A, comparable to the stellar radius, R, would have a period

. P )%
(106Rcm 5PTk 20 l_ months.

(125

To model the response of such a star, we shall use a phenomenological modifica-

tion of (5), namely
2

__ 1 d_ fl2Tkfl= 1 dN N RTk.. I_
dt 2 c

(13)
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where __ is the frequency of the Tkachenko mode (for further discussion, see

s_ham f_TS_.

The _(t) given by (6) and (7) is again a solution, but _(t) obeys (13) with

N(t) replaced by _N(t). Making the same assumptions as before, _(t) can again be

calculated. The resulting general expressions for that part of (A_)2 associated

with the Tkachenko mode are quite complicated. However, if we assume that the

fluctuating torque has been acting for some time T N which is long compared to

either T or T, that _Tk _ I, and furthermore, that the mode is lightly damped,

_Tk T >> l, the expressions for torque models (i) and (2) simplify to

_}2 ___n_n2 1 R182 (R__)2( _ ( ) _ (14)
Tkl c 1 s

and

A_ 2 I 2 1 2 .PTk .
2

Tk2 C S

If, on the other hand, the mode is heavily damped, _Tk T << i, the general expressions
reduce to (8) and (9), and its existence is no longer apparent.

III. APPLICATIONS TO CEN X-3 AND HER X-i

As may be seen from Figure 1 and Table i, for both Cen X-3 and Her X-i the

pulsation period shows a deviation from the indicated straight line which, if

periodic, has an apparent period, Pv- ' which is comparable to the time, T, over
which observations have been made. _is suggests that in these two sources one

may be observing either shot noise in _ or a Tkachenko oscillation with period

PTk % T, excited by torque fluctuations.

a) Accretion Torque Fluctuations

We can place an upper limit on the amplitude of the fluctuations in _ to be

expected within the framework of the accreting neutron star model, as follows.

Coupling between the angular momentum of the accreting matter and the neutron star

occurs at the Alfv_n surface, where the time scale for variations in accretion

flows is of the order of the hydrodynamic time scale, TH _ (R_/GM) _ , and is

0.i to 1 sec for typical accretion conditions (Lamb 1975a). Therefore, if torque

fluctuations are associated with macroscopic fluctuations in the accretion process,

we expect the rate of fluctuations to satisfy R _ 1/T H. A description in terms

of torque noise is only appropriate if there are a large number of fluctuations

during the observing period, RT _ i0, say. The torque noise model thus leads us

to expect values of RT in the range

< _ 4x108 RA -3/2 (M_)½ ( T )

i0 RT (108 cm_)
(16)
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b) Shot Noise Interpretation

If we adopt for the moment a shot noise interpretation, we can estimate

RT/n282 (model i) or _2T2RT (model 2) for each source from the observed values of

AM, using (8) and (9). The results are shown in Table 2. The similarity in the

product values derived for the two sources is perhaps surprising, in view of the

fact that the spin up times for the two stars differ by two orders of magnitude

(suggesting comparable differences in the angular momentum fl_xes onto the two

stars) and the likelihood (Lamb 1975b; Schreier et al. 1975) that the mass

transfer modes are different as well (stellar wind in Cen X-3, Roche lobe overflow

in Her X-l). However, in both sources one likely has orbital inflow of the ac-

creting matter, and the physical processes by which matter enters the two magneto-

spheres may well be quite similar. Assuming _ _ i, white torque noise (model i)

can account for the observed variations in _ if 8 >> i. For example, changes in

of size _ (i/i0) <M> at a rate R % i0 sec -I and lasting for 104 sec would

suffice. On the other hand_ if a part of each torque fluctuation las_l_ger than
(model 2) a fluctuation oM '_ t±/±ul _n_, u£ which on±y a _r_cu_u,J v ±u p_r-

sists, would also suffice, again assuming R _ i0 sec -I.

c) Tkachenko Mode Interpretation

If we instead interpret the period variations in terms of Tkachenko oscilla-

tions with PTk % T, we can estimate (Ic/In) 2(RT2/B2T) (model i) or (In/Ic)2(y2RT)

(model 2) for each source using (14) and (15), with the results again shown in

Table 2. From (12), a Tkachenko mode with a wavelength _ 5 km has the correct

period to explain the observed period variations in both Cen X-3 and Her X-l,

provided, of course, that the variations prove to be genuinely periodic. Again,

the required level of fluctuations is within the range (16) if angular momentum

jumps with 8 >> 1 or torque jumps of duration > T occur (the longer the crust-

core coupling time T, the smaller the required values of 8 and T).

d) Discussion

HOW can we decide among these various possibilities? Our calculations suggest

that, for torque fluctuations of a given size and rate, the power in the Tkachenko

oscillation will dominate that in the shot noise component if T _ T (model i)

or 360 _Tk T _ (_TkT) 3 (model 2). Thus, if the crust-core coupling time T is of

the order of years (the value deduced for the Vela pulsar), and T _ PTk' as

suggeste d by (12), at the present time the power in the two components will be

about the same. Moreover, the power in both will be a maximum at _ _ 2_/T, and the

two interpretations will at present be indistinguishable. However, comparison

of (8), (9), (14), and (15) shows that if the period of observation is extended

to, say, 2T, the two interpretations lead to quite different predictions.

If one is observing random pumping of a resonant mode, the power at the fixed

frequency of the mode will remain constant, whereas if one is observing shot noise,

one will see roughly twice (model i) or 8 times (model 2) the old power (A_)2

peaked, however, near the new frequency _' % _/T. In addition, the two shot noise

models predict different power spectra, _ _-2 (model l) and _ _-4 (model 2). Thus

future observations can easily decide among these possibilities, either by extending

the length of the observing period, or by providing more accurate and more frequent
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Table 2

Inferred Shot Noise and Tkachenko Oscillation

Parameters for Her X-I and Cen X-3

Parameter Her X-I Cen X-3

(RT/n282)NI _ 1 _ 3

(n272RT)N2 % 50 % 20

PTk (months) _ 20(A/106 cm) _ 40(l/i06 cm)

(Ic/In)2(RT2/82T)Tkl _ 8 _ 20

(In/Ic)2(y2RT)Tk2 _ i0 _ 2
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period determinations which would allow the data to be analyzed in segments of

varying length. Should the resonant mode interpretation be confirmed, end the

observing period extended to T >> T, it would be possible to resolve the peak

in the power spectrum due to the mode, and thus to measure T directly.

IV. CONCLUDING REMARKS

Our calculations show that fluctuations in the accretion torque could account

for the period variations in the pulsating X_ray sources, Her X-I and Cen X-3.
The values of the fluctuation parameters, R7 , inferred from either a shot noise

or Tkachenkomode interpretation of the data are, moreover, consistent with values

to be expected frumprocesses at the magnetospheric boundary of an accreting

neutron star.

Although present observations do not permit one to decide among the various

interpretations of the period variations that have so far been proposed (shot

noise, Tkachenko oscillation, slow but very large amplitude torque variations,

or triple star system}, this should become possible on the Dasis of future ob-

servations. If a period variation proves not to be genuinely periodic, this would

be strong evidence against the Tkachenko oscillation or triple star interpretation.

The shot noise model predicts that the amplitude of the period variation will

increase steadily with the length of the observing period T, and that the residuals

will show Pva r _ T. Slow but very large amplitude non-random torque variations

would not be expected to show such a scaling.

On the other hand, a genuinely periodic variation would be strong evidence

against the shot noise or changing torque interpretations. Both the Tkachenko

oscillation and triple star models make definite predictions. The triple star

model predicts a near-perfect periodicity, with power confined to a very narrow

bandwidth characteristic of changes in the orbital motion, whereas the Tkachenko

oscillation model predicts a bandwidth A_ _ l/T, or, if more than one mode is

excited, somewhat larger. Thus a quasi-periodicity, characterized by a fixed

period but an appreciable bandwidth, would be consistent with the Tkachenko model,

but probably not with the triple star model. An independent determination of z would

further constrain the Tkachenko model, but given uncertainty as to whether over_..

tones can be significantly excited, and the wide range of torque fluctuations which

are consistent with current accretion theory, might not be decisive. If periodic

variations are found in a number of regularly pulsating X-ray sources, and the

periods all correspond to those expected for the fundamental Tkachenko mode, this

would be indirect evidence favoring the Tkachenko oscillation model.

Should torque fluctuations be confirmed as the cause of the period variations

in Cen X-3 and Her X-I, X-ray timing observations may yield valuable information

about the flow of accreting matter into neutron star magnetospheres. The rate and

size of fluctuations, and the relative contributions of torque and angular momentum

jumps would provide important clues about instabilities at the Alfv_n surface

(Lamb 1975b] and the extent to which changes inthe flow are preserved.

In conclusion, we note that fluctuating mass flow rates may be responsible

for other phenomena observed in compact X-ray sources. For example, randomly

fluctuating torques can start up wobble whose initial amplitude is zero, as noted

by Lamb et al. (1975). As a second example, in close binary systems experiencing

mass transfer, fluctuations in the mass flow rate may lead to binary period varia-

tions, such as those observed in the Krzeminski's star - Cen X-3 system. Finally,
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we note that similar phenomena are to be expected in the case of accreting de-

generate dwarfs: fluctuations in the mass transfer rate can cause variations in the

orbital period, while fluctuations in the accretion torque acting on the dwarf

can cause variations in the dwarf spin period.
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VARIABILITY OF HZ HERCULIS DURING THE

OPTICAL OFFS

WM. LILLER

Center for Astrophysics

Harvard College Observatory and

Smithsonian Astrophysical Observatory

Cambridge, MA

ABSTRACT

Additional material from the archival photograph

cOllection at the Harvard Observatory has been used to derive an

improved light curve for HZ Her during its optical OFFs. The

full amplitude of the double sinusoidal variation, AB = 0.187

± 0.054 mag.

From archival photographs stored at the Harvard College

Observatory, Jones, Forman and Liller (1973) discovered that at

10-20 year intervals, the _2 mag, 1.7 day variation in brightness

of HZ Her ceases abruptly (within a 9-day interval), and for

the next several years, the only variability that remains is

a small-amplitude double sinusoidal fluctuation caused, presumably,

by the rotating figure of the Roche lobe surrounding the normal

star as it is seen first end-on and then broad-side. Jones

et al. estimated that the full amplitude of HZ Her during

optical OFFs was Ampg = 0.28 ± 0.06 mag. This result was based

entirely on 26 blue-sensitive plates taken with a 41-cm refractor.
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Because the variability of HZ Her during optical OFFs

gives us important information about the two components and

the Roche lobe, it is desirable to determine as accurately as

possible the nature of this variability. Presented here is a

refined result based on these same 26 points (now given double

weight) and 86 additional magnitude determinations made from

patrol plates taken with i0- and 4-cm diameter lenses. Most

plates were taken in the OFF periods of 1937-1942 and 1948-1957.

Figure 1 shows the normal B magnitudes plotted against the phase,

$ = (t-2441506.3921)/l.700165n where t is Julian days. # = 0

corresponds to center of X-ray eclipse; the curve is a least

squares sine curve with full amplitude _B = 0.187 ± 0.054 mag

and the phase at minimum light, $o = 0.046. Thus, to the

accuracy of the result, the phase agrees with that predicted

from the ephemerides given by the full _2 mag fluctuation and

by the X-ray eclipses.

The author would like to thank the National Science

Foundation for supporting much of thisresearch.
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Fig. I. - The B-magnltude light curve of HZ Her during optical

OFFs as derived from If2 blue photographs in the oollection

of the Harvard College Observatory. The data are folded

modulo 1.700165 days and averaged in phase bins of 0.1. The

full length of the error bars is twice the mean error.
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PRECESSIONS OF THE NORMAL STAR IN X-RAY BINARIES

Jacobus A. Petterson

Physics Department

Yale University

New Haven, CT. 06520

Is it possible that the rotation axis of the normal star

in an X-ray binary system performs a non-negligible precession?

Since the star is in an expanded state we may not simply apply

rigid body mechanics to answer this question; on the other hand

fluid dynamics is not prepared at the moment to give us an

accurate description of the behaviour of matter in such a star

under the influence of a large external torque.

For a precession to occur it is needed that the rotation axis

of the star is not aligned with the rotation axis of the binary

system. However, the theory of tidal evolution of binary

systems is not ready at present to predict how large a mis-

alignment we may expect.

The existence of a 35 day period in Hercules X-I has provoked

the suggestion that the clock of this periodicity is the kind

of precession we are looking for.

Therefore it is of some interest (and not only for these who

want to explain Her X-l), to see whether direct evidence for

this precession can be obtained.

We discuss observations that might lead to this direct evidence.
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OSO-8 OBSERVATIONS OF HERCULES X-I

S. Ho Pravdo: R. H. Becker, E. Ao Boldt, S. S. Holt,

R. E. Rothschild, Po J. Serlemitsos, and J. H. Swank

NASA/Goddard Space Flight Center

Greenbelt, Maryland 20771

ABSTRACT

The X-ray binary Her X-I was observed by the GSFC cosmic x-ray

detectors aboard OS0-8 between August 26 and September 3, 1975.

Our data indicate that Her X-I turned on in its _ 35-day cycle

by I0 h UT August 28° The results reported here are based on

"quick look" tapes which contain less than 10% of the total

time spent on source. Spectra have been observed during dif-

ferent phases of the binary period including the anomalous low

state (dip) in X-ray intensity. The normal high spectra is

well represented by a power law with a short cutoff above

25 keV. A significant and varying enhancement in the

intensity around 6.7 keV is observed, suggesting the presence

of an iron line. Absorption is seen in the spectrum immediately

following eclipse° The dip spectrum is found to be considerably

flattened° Also spectra are presented for different phases of

the pulse period.

The GSFC Cosmic X-ray Spectroscopy experiment aboard OSO-8 observed Hercules

X-I for over a week during late August and September of this year. By monitor-

ing real time satellite passes, we were able to determine that Her turned on its

X-rays at about i0" UT August 28, probably near phase .25 of the binary cycle.

This time is within the limits of an extrapolation from previous cycles of a _35

day period (Davison and Fabian, 1974). On the basis of "quick look" data which

represent a small but significant fraction of the total time on source, we

would llke to share some spectral observations which perhaps yield clues to

the nature of Her X-I

The first spectra (Fig. I) were actually taken last, leaving Her. The binary

eclipse ends at phase .068 so the transition spectrum shown below occurs during

the rapid rise to the high state--about 5 minutes° The high state spectrum

above shows the same general features as an earlier Goddard observation in a

rocket flight (Holt et alo, 1974)--a power law in photon intensity per unit

energy versus energy with a sharp cutoff around 27 keVo There in addition

appears an e_hancement in intensity around 7 keV. The transition spectrum can

be interpreted as a high state spectrum modified by absorption through cold

matter. A better fit is obtained by increasing the iron abundance in the

material by_@ factor of _i0 over solar abundance° The absorption is due to

4 - 40 X i0 zz equivalent hydrogen atoms per square centimeter. From known and

estimated orbital parameters it is possible to determine the average path

length through which the X-rays are absorbed. Using 5 minutes as the time

between total eclipse and high state, this distance is 6 x I0 I0 cmo Assuming a

uniform spherical shell of absorbing material _elds an average density of
6 x I0 II atoms/cc. The shell thickness is _I0 u cmwhich is larger than the

scale height of the HZ Her atmosphere but is approximately equal to the

+Permanent address: University of Maryland, College Park, Maryland
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difference between theoretical estimates of the stellar radius and the Roche lobe

radius.

The second set of spectra (Fig. 2) are the earliest of this group. They were

taken with an argon detector with response up to 24 keV so no cutoff is observed.

The high state spectrum is similar to the previous high state spectrum from the

Xenon detector except that the enhanced intensity around ? key has a -,,ch

narrower width and greater statistical signlflcance--about 7 sigma. This feature

can be interpreted as an emission line from iron. This line contains about 6_

of the continuum energy between 2 and I0 keV, and has an equivalent width of

~ .5 keV.

The lower spectrum was collected 30 minutes after the high state, during one

of the intensity dips which occur once per unecllpsed portion of each binary

cycle° The X-ray intensity has fallen by a factor of 10 during this dip. In

contrast to the transition spectrum shown before, this dip cannot be explained

by passage of the high state spectrum through cold matter. In fact the best

fit is for a flat photon spectrum (spectral index = 0) with absorption. If

ionized matter were the absorber we would not expect such a substantial

depletion in the softer X-rays relative to those above I0 keV.

The origin of a varying iron emission line is not clear. Optical emission

lines are observed from HZ Herc which vary in intensity relative to the con-

tinuum as a function of binary phase. According to one model (Basko end

Sunyaev, 1973) the temperature in some areas of the stellar atmosphere heated

by the X-rays can reach i0 U K but even this is low for thermal emission

of iron K lines. Flouresence of iron from either the stellar atmosphere or the

neutron star are other possibilities.

Figure 3 is a histogram of the Her light curve folded modulo the 1.24 second

pulse period. The pulse shows the characteristic fast rise and slow decay

observed before (Doxsey et al., 1973) with little or no interpulse. About

55Z of the emission is pulsed--a constant fraction from 2 to 24 keY. Spectra

from yet another time were obtained from the photons represented in the two

shaded areas.

The upper pulsed spectrum in Figure 4 gives an acceptable fit for a simple

power law which may be somewhat flatter than that obtained before. The lower

minimum spectrum has the same general shape as the pulsed but also exhibits an

enhancement around 6 keV. This is a broad feature and may relate to iron again.

Finally, the average spectrum (Figure 5) of all photons in the light curve

resembles closely the xenon detector high state.

In sunmmry iron may have been detected in the Her X-I spectrum both in an

emission line (high state) and an absorption edge (transition). Also the region

giving rise to the non-pulsed component could be responsible for this iron.

Absorption by cold matter can explain the transition spectrum but not the dip

spectrum which is considerably flattened.
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OPTICAL FLICKERING IN t1Z IIERCULIS

Richard 11. St. John

Department of Physics and Astronomy

University of New _,lexico

Albuquerque, New Nexico 87131

ABSTrC_CT

Observations of HZ tlerculis over two 35 d periods show the exi';tence of

nonperiodic optical flickering, The flickering peaks at phase 0.5 in the

1.7 d period. The difference of the flickering curves obtained during

X-ray on and X-ray off shows no detectable 35 d dependence.
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THE 35d CYCLE DEPENDENCE OF THE 1.7 d B-V

LIGHT CURVE OF HZ HERCULIS

Richard H. St. John and Victor H. Regener

Department of Physics and Astronomy
University of New Mexico

Albuquerque, New Mexico 87131

ABSTRACT

The 1.7 d light curve obtained during two 35 d cycles of HZ lierculis shows

a hot component during X-ray on that is not seen during X-ray off. The

disappearance of this hot component near X-ray eclipse suggests that it

is associated with the X-ray source.
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HER X-I

Discussion

Comments following paper read by R. Henry (Soft X-Rays From Her X-I

During the "Off" Phase).

H. Gursky - Since the pulsation is 50% at 1-2 keV, if you can detect

the x-rays at all, you can detect the pulsation° Have you

Fourier-analysed the 1-2 keV data?

R. Henry - No, we have not° We only realized a few days ago that

we were detecting Her X-I in this energy range° This is certainly

something that should be done, and we will do it.

D. Eardley - The model of Thorne and Price is for Cygnus X-I, not for

Hercules X-l, and will not be directly applicable to that object.

R. Henry - This is certainly true. Thorne and Price are dealing with

black holes in general, ' and Cygnus X-I in particular, and we are

dealing with the accretion disk of a neutron star, Hercules X-I.

We are guided by Thorne and Price only because it seems to be

the only thing available. It may be entirely inappropriate.

P. Joss - The suggestion that the spectral shape is the same in the

"off" phase as in the "on" phase, but reduced in intensity, is

consistent with a picture wherein the 35-day cycle is due to

variable grey obscuration. Such observation could be produced

by electron scattering in very highly ionized matter that period-

ically intercepts the line of sight between the source and the

earth.

R. Henry - There is a most important point, which I simply forgot

to mention. R. Giacconi and his colleagues (Ap. J. 184, 227,

1973; Ann. N. Y. Acad. Sci. 262, 312, 1975) have found that there

is no detectable change in the,spectrum of Her X-I as the off-

phase cormnenceso Also, Joss and Fechner (Ann° No Y. Acado Sci.

262, 385, 1975) have found that the Her X-I pulse shape varies

little during most of the "on" phase, but that the pulsations

disappear as the "off" phase commences° They suggested that

both the variable obscuration of the pulses and the production

of the unpulsed component are due mostly to electron scattering

by very highly ionized matter.
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CENTAURUS X-3: THE OBSERVATIONAL PIC'I_RE

H. Mauder

Astronemisches Institut

Universit_t TGbingen

D-7400 T_bingen Fed.Pep. of Germany

In their well known paper Schreier et al. (1972) were able to identify for

the first time a stellar X-ray source with a binary star. The analysis of the

4.84 s pulsations yielded a sinusoidal variation of the pulsation period

due to Doppler-effect. Variability in the X-ray intensity was interpreted

...... _'_-^ *_ X-._, o_r_ _,_ by _ lar_. massive c_cmpanic_.

_hey derived the orbital period and the mass (_nction which allowed for a

first interpretation of the system. Besides of that they found a short

transition stage between the high and the low level of the X-ray intensity,

due to an atmospheric occultation of the X-ray emitter by the large companion.

_heir main results were

Time of Mid-eclipse

Mean pulsation period

Projected orbital velocity

rsini

Mass function

Duration of total eclipse

Duration of transition

JD (244 I132.081 + 0.001)

+(2.08712 +- 0.00004) x E

4.842 S

415.1 ± 0.4 km s -1

(1.191 + 0.001) x 1012 om

(3.074 +- 0.008) x 1034 g

(0.488+ 0.012)d

(0.035-+o.occ)d

Based on these results several autl_rs used the eclipse duration together with

a limiting Roche configuration and the mass function to derive the individual

masses of the two components, see e. g. Wilson (1972), Osaki (1972) and van

den Heuvel and Heiae (1972), and got astonishingly low values fc_ the mass of

the neutron star. It was pointed out by Weednmn and Hall (1972)and by McCluskey
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and Kondo (1972) that the derived results might be remarkably altered by the

presence of obscuring material outside of the Roche limiting surface. A theo-

retical model for pulsating X-ray binaries was presented by Davidson and

Ostriker (1973) who mentioned also the inloortance of departure from corotation

for the massive primary star. In this case the Roche configuration must be

renlaced by a Tidal limiting surface, which in turn leads to remarkably different

results for the limiting masses in the system.

Yrzeminski (1974) succeeded in identifying the optical counterpart of Cen X-3

with a 13.4 nag, heavily reddened star just outside the UHi_U error box of

Giacconi et al. (1974), but inside the refined error box derived by Parkinson

et al. (1974) from Copernicus observations. Spectroscopic observations by

Rickard (1974), Vidal et al. (1974) and Osmer et al. (1975) show the primary

star to be an early type giant or supergiant of spectral type 0 6.5 (Osmar),

0 9.5 - B 0.5 Ib (Rickard) or 0 9 III - V (Vidal). P Cygni type profiles are

seen in several lines indicating an expansion of the stellar atmosphere with

a velocity of 800 km s-I. Comparison of the spectra with the non-LTE model

atmospheres of Auer and Mihalas (1972) shows that the spectra are consistent

with values of Tef f = 30 000 - 32 000 K and log g : 3.5. No spectral changes

with the orbital phase were detected thus indicating that heating of the vi-

sible star by the X-rays plays no important role.

Optical light curves were obtained by Krzeminski (1974), Mauder (1975) and

Petro (1975). The light curves show a double wave with an an_litude for the

deeper minimum of 0.10 nag (Petro), 0.12 nag (Krzeminski) and 0.14 nag

(Mauder). The light variations are interpreted as due to the orbital motion

of the distorted primary star around the center of gravity. From the light

curves it is possible to derive limiting values for the mass ration thus yiel-

ding lower limits on the mass of the compact object, which is believed to be

a neutron star. Petro and Mauder derived remarkably high lower limits for the

mass of the neutron star, 2.5 M 0 and 3.0 Mo, respectively. A rediscussion of

the system properties, including the duration of the X-ray eclipses, for in-

stance by Avni and Bahcall (1975) and by Wickramasinghe (1975), give lower

limiting masses. The problem of interpreting the optical light curves will be

discussed later in this panel. Krzeminski (1974) and Mauder (1975) also derived

UBV colours for Cen X-3, givi_
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V B-V U-B

Krzeminski 13.35mag +1.065mag -0.04 mag

Mauder 13.38 +1.04 + 0.02 -0.08 + 0.02

The high amount of reddening of the early type star as well as the appearance

of interstellar lines in the spectrt_n points to a large distance of Cen X-3.

A reasonable estimate of a distance between 6 and 9 kpc was recently given

by Htm_ohreys and Whelan (1975) who also refer to earlier distance deter-

minations.

The X-ray pulsations were observed in several energy bands over a longer

time interval by Baity et al. (1974) and by Ulmer et al. (1974). Additional

X-ray observations were obtained with the Copernicus satellite by Tuohy and

Cruise (1975) and with the Ariel 5 satellite by Pounds et al. (1975). Pounds

et al. were able to observe the transition of Cen X-3 from an extended low

during several consecutive orbital cycles until to the normal high stage.

The observations support the model of extended lows to be caused by enhanced

activity of the stellar wind from the primary star. Several dips were observed

in the X-ray intensity during the uneclipsed high state by Pounds et al. as

well as by Tuohy and Cruise. The simultaneous hardening of the X-ray spec-

trum during the dips is consistent with the interpretation of the dips as

absorption by circumstellar matter and probably due to the shock front of

an accretion wake in the stellar wind. Pounds et al. derived from the Ariel 5

data the times of minima of Cen X-3 and concluded, that the orbital period

of Cen X-3 remained constant between May 1972 and November 1974 within the

range of uncertainity given for the UHURU data by Schreier et al. (1972). On

the other hand, Tananbaum and Tucker (1974) give the variations of the orbital

period of Cen X-3, based on UHURU data from 1971 and 1972. They also report

variations in the 4.84 s pulse period, probably correlated with extended low

states.

A search for optical 4.84 pulsations was done by [asker (1974), Canizares and

McClintock (1974) and Peterson et al. (1975) with negative result. However,

as mentioned by Tuohy and Cruise (1975), this search was done during extended

low stages of Cen X-3; the X-ray intensity of Cen X-3 was almost certainly

weak and optical pulsations were hardly to be expected during this research.
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Several theoretical investigations were also done on Cen X-3 but it is not

the aim of this short review to discuss those papers.
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C_NTAURUS X-3 PANEL SU_t_EY

H. Mauder
Astronomisches Institut
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D-7400 T_bingen
Fed.Rep. of Germar_

From the presentations and subsequent discussions it turned out, that we are

still far from being able to present a model for Cen X-3, which explains all

the observations and details, especially in the X-ray region. However, a _er_ral

picture can be given which may serve at least as a preliminary model. To a

first approximation Cen X-3 can be described in terms of the Roche model with

the primary star filling or almost filling its critical surface. The spectrt_

of the primary star is not classified beyond any doubt; the spectral type is

around 09 with an uncertainity of one or possibly even two subclasses. The

luminosity class is most probably about III. It is difficult to find a solution

for the ross ratio which is consistent with the X-ray eclipse duration as well

as with the amplitude of the optical light variations. For an orbital inclina-

tion close to 90° i£ was shown, that the eclipse duration is not in conflict

with a _ass ratio less than 0.12; on the other hand, an explanation of the

light curves requires a n_ss ratio at least equal to or larger than O.12. No

consistent solution is possible if the inclination is remrkably less than 90 °.

Therefore, the most probable values for Cen X-3 are

Orbital inclination 80° - 90 °

Mass of Primary 19.5 M@

Mass of Secondary 2.3 M@

Consequently the compact object in Cen X-3 should be a neutron star.

Stellar wind activity is present and variable in time, as is clearly shown

by the observations of UHURU, Copernicus and Ariel 5. The extended lows in Cen

X-3 are due to enhanced stellar wind activity rather than to a fading out of

the stellar wind. This was obviously seen in the time dependent behaviour

during disappearance and reappearance of the X-ray source. In the X-ray inten-
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sity between the eclipses pronounced dips are seen around orbital phase 0.7.

The dips are correlated with a hardening of the spectrum indicating obscuration

by circumstellar material. Very probably the dips are due to the shock front

of an accretion wake in the stellar wind. 7he position of the dips gives a

measure of the wind velocity in the system at the distance of the cumpact ob-

ject from the primary star. Detailed studies of the spectral behaviour in the

X-rays yielded a very complex structure. There is an indication of absorption

by ionized and by cold matter, variable features may be due to absorption and

emission by iron and other elements. In general, the interpretation of the

X-ray spectra presents a very difficult problem.

A study of the times of mid-eclipse yielded no significant variations of the

orbital period since 1972. Studies of the X-ray pulses gave a linear speeding

up of the mean pulse period according to the accretion of mass on the compact

object. The Doppler shift of the pulses due to the orbital motion allowed far

the determination of an upper limit of the orbital excentricity which must be

less than e : 0.003. Estimates of the hydrogen col_ density gave some suggestion

of the influence of the interstellar matter on the low-energy cut-off in Cen

X-3; again the variable effects cannot be interpreted by a simple model.
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THE INTERPRETATION OF OPTICAL LIGHT VARIATIONS OF CENTAURUS X-3

H. Mauder

Astronomisches Institut

Universit_t TObingen
D-7400TL_oingen Fed.Rep. of Gerr_

ABSTRACT

The interpretation of optical light variations of X-ray binaries

is discussed for the case of negligeable reflection effect. The

limiting cases of synchronous rotation of the visible star

(Roche cnnM_a_n) _ nf no rotation (p,:__etidal defo_.__tion)

are considered. The theoretical results are compared with the

available light curves of Cen X-3. X-ray data of the Copernicus

satellite are used to get an impression of the atmospheric structure

of the outer layers of the visible component. It is shown, that

the X-ray eclipse duration is in good agreement with the mass ration

derived from the optical variations. The X-ray eclipse duration

is discussed with respect to the extended low states and a possible

correlation of the extended lows with the appearance of the optical

light curves is considered.

INTRODUCTION

In binary systems, like Cen X-3, where only the mass function is available,

it is necessary to get additional information on the mass ratio to derive

limiting masses of the components. There are two informations which can be

helpful: the duration of the X-ray eclipse and the amplitude of the light

variations. However, both values are derived empirically and may be subject

to observational errors as well as systematic ones. This is clearly demon-

strated by the extreme solutions of Wilson (1972), who finds a maximt=nmass

for the neutron star of 0.23 M 0 using the eclipse duration, and that of Mauder

(1975), which yielded a lower limit for the mass of the neutron star of

3.0M 0 from the light curve.
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It is also especially necessary to allow for the possibility of no bound

rotation of the primary star, as pointed out by Davidson and Ostriker

(1973). Modeling the shape of the primary star for calculations of the eclipse

duration and for obtaining synthetic light curves, the Roche limiting lobe

as well as the Tidal lobe must be taken into account as extreme cases.

MODEL LIGh'f CURVES

The program for generating synthetic light curves was set up by

(1976). It is based on the papers of Hutchings and Hill (1973), but with

different handling of the geometry and the integration grid and with a vari-

able opacity coefficient for the stellar atmosphere. For a comparison of the

results with the data of Wickrarmsinghe and Whelan (1975) some test cases

were calculated. The amplitudes for orbital phase 0.0 (X-ray eclipse) are

identical with the values of the grey atmosphere program of Wickramasinghe

and Whelan within 0.001 mag and are on the average 0.005 _ lower for

phase 0.5 (inner Lagrangian point towards observer). The same was done for

the case of pure tidal distortion, the results were compared with Wickra_a-

singhe (1975). Again there is excellent agreement for phase 0.0 but the

amplitudes for phase 0.5 are on the average 0.005 mag lower than those of

Wickravasinghe. This small difference is probably caused by the local variabi-

lity of the opacity coefficient, the deviation from the mean opacity coeffi-

cient is largest in the vicinity of the inner Lagrangian point. For parti-

culars see Mauder (1976).

According to the spectroscopic results model light curves for Cen X-3 were

calculated for Tef f = 30 000 K, an assumed orbital inclination i = 90° and

the mass ratios q = Mx/M 1 = 0.05 (dotted line) and q = 0.15 (full line).

The Roche geometry is used. In Figure I the observed light curves are shown

together with the model light curves. The light curve on the top represents

the observations of Mauder (1975), in the middle are the observations of Petro

(1975) and at the bottom the values of Krzeminski (1974). It is evidently

seen that a mass ration as small as q = 0.05 is in conflict with the obser-

vations while q = 0.55 gives a satisfactory fit. Replacing the Roche geometry

by a tidal lobe reduces the amplitudes of the theoretical curves by about
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5 % for phalse 0.O and by lO % for phase 0.5 for the same nmss ratio; a

reduction of an equal amount is introduced by changing the orbital in-

clination from i = 90 ° to i = 75 °. No definite values for i and q can be

derived from the light curves available, but limiting cases are obviously

given. An inclination i remarkably smaller than 90° forces the mass ratio

to be larger than q = 0.15. On the other hand, if i is close to 90o, than

a mass ratio in the range O.10 _ q _ 0.15 is necessary.

ECLIPSE DURATION

It was pointed out already by Schreier et al. (1972) that the duration of

the X-ray eclipse in Cen X-3 seemed to be variable. It is clearly shown

by Pounds et al. (1975) how the X-ray eclipse half angle_is affected by

the activity of the stellar wind. Pounds et al. find an eclipse half angle

for the undisturbed X-ray light curve of 39° ! 2°. Avni and Bahcall (1975)

derive the mass ratio especially from the eclipse half angle. However,

in the mass ratio range under consideration q depends very sensitively

on the right value orig. In the case of Roche geometry,-= 39° corresponds

to q = 0.07 while_= 36° gives q = 0.12. On the other hand it seems

questionable, whether in a star with an expanding atmosphere, which pro-

duces an observable stellar wind, the Roche limiting surface can be attri-

buted to the atmospheric layer which causes the X-ray eclipses. To get

an i_pression of the importance of the effect, the Copernicus data of

Parkinson et al. (1974), who observed the atmospheric eclipse, were used

to derive the structure of the outer atmosphere of the Cen X-3 optical

star. An exponential atmosphere was assumed with

_ : _exp(-_r)

where r is the radial distance from the center of the star in units of

the orbital diameter. In Figure 2 the respective optical depths are shown

for_ = 20 and _= 25, together with the optical depths of the 4 - 12 keV

band observations. An extrapolation of the Copernicus data to an optical

depth _= I gives_= 40.5 °. Taking the mean absorption cross section

per proton from Cruddace et al. (1974) for the X-rays and assuming the

mean opacity in the visible region to be due to Thompson scattering on

181



free electrons, yields an optical depth 'r : i in the visible light at

= Therefore, the optical photosphere is used for the light36° . which

curve calculations and is normally identified with the Roche limiting

lobe, maybe somewhat smaller than the lobe suggested by the X-ray eclipse

duration.

The scale height derived for the atmosphere is 6 x 1010cm and the number

density n H = 4 x 1012cm -3 above the optical photosphere at r = 0.59. This

is in good agreement with Schreier et al. (1972) who estimated a scale

height of 5 x 1010cm and a number density in the order of 1012cm -3. If the

optical photosphere is identified with the limiting lobe of the star, than

the mass ratio from the X-ray eclipse duration would be q = 0.12 in the Roche

case and q : 0.17 in the Tidal case. Since the mass ratio depends very sen-

sitively on the eclipse angle it is at least dangerous, to take the mass

ratio derived from this value as granted.

DISCUSSION

Trying to find a consistent model for Cen X-3 it seems to be mo_t reasonable

to accept a mass ratio q : 0_12 and an inclination i close to 90° . It would

be very difficult to understand the eclipse duration with a larger mass ratio.

On the other hand, a lower mass ratio or a lower inclination would be in

conflict with the optical light curves. The most probable values for Cen

X-3 are therefore M 1 : 19.5 M@.and _ : 2.34 M@. As a consequence, the

projected orbital velocity of the primary star would be vlsin i = 50 km s-I

This is still a possible value according to the spectral investigation of

0smer et al. (1975).

It might be questionable whether the synthetic light curves are adequate

to describe the light changes in X-ray binaries. However, the detection of

pulsed X-rays in Vela X-1 offers the possibility of a test calculation.

Particulars on Vela X-1 will be discussed later in this symposium, but from

the mass ratio q : 0.084 the theoretical light amplitudes can be calculated

to be 0.073 mag and 0.098 meg. The observed values are, according to Wickra-

masinghe and Whelan (1974), 0.08 mag and 0.10 mag. The agreement is satis-

fying. It should be noted that the three light curves of Can X-3 are some-
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what different, showing also different amplitudes. Of course, intrinsic

variability of the optical star is superposed on the pure rotational light

changes. However it should be noted that the light curves are taken at diffe-

rent stages of X-ray activity, and therefore also stellar wind activity,

of the system. From Tuohy and Cruise (1975) it can be seen, that the obser-

vations of Krzeminski are taken partly during high stages and partly during

extended lows of X-ray intensity. The light curve of Petro was taken mainly

during an extended low and the light curve of Mauder during a high stage.

It would be interesting to investigate further the influence of stellar

wind activity on the light variations.
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Figure i: Observed light curves of Cen X-3 in the visual

region. Theoretical light curves for i : 90 ° and Roche

geometry are given for the mass ratios q : 0.05 (dotted)

and q : O._5 (full line).
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spheres, together with the Copernicus X-ray optical

depths derived from the data of Parkinson et al. (1974).
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Wisconsin Soft X-Ray Observations of Cen X-3

A. N. Bunner and W. T. Sanders

Dept. of Physics, Univ. of Wisconsin

Abstract

A sounding rocket experiment on 12 November 1973 observed pulsed

X-rays from the vicinity of Cen X-3 in the 0.6 to lO keV range with a

period of 4.84 sec while Cen X-3 was at binary phase 0.41. The

intensity is roughly consistent with that reported by Bleeker et al.

(Ap. J. |83, LI, 1973). The pulsed fraction in the 0.6 to 2 keV band

is small, consistent only with the low energy tail of an absorbed

15 keV bremsstrahlung spectrum. An additional non-pulsed component

is required between 0.6 and 2 keV to fit the observations. Fast

Fourier transform analysis of the _ lO4 counts recorded reveals no

evidence for other periodicities in the range 0.2 to 260 Hz.
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THE INTERSTELLAR MATTER COLUMN DENSITY TO CEN X-3.

C. Ryter*

NASA/Goddard Space Flight Center

Greenbelt, Maryland 20771

ABSTRACT

The usual gas-to-dust ratio has been shown to hold quite

precisely for a sample of supernova remnants with avail-

able X-ray spectra and interstellar reddening observa-

tions. Supernova remnants are extended objects, tenuous

enough to be optically thin in the X-ray range; it appears

that the X-ray observations can readily be interpreted in

terms of a main source component and of an interstellar

perturbation affecting the lower part of the spectrum.

1021 -2 -i
NH/EB_ V (6.8 _ 1.5) x H atoms cm mag (I)

has been found to hold, without any sizeable systematic

deviation up to EB. V _ 1.7. Here, NH expresses the

total hydrogen column density, incluHing ionized, atomic,

and molecular forms.

Cen X-3 is associated with an OB supergiant, and ER-V =

1.29 mag; eq. i thus yields NH = 8.8xi021 H atoms _m -2.

The effect of such a column density is easily detectable

in the X-ray range. The spectrum exhibits a low energy

cut-off, which, according to the usual practice, is

parametrlzed by a column of cold matter, N X. The cut-off

is definitely observed to be variable_ and values of NX
range from _0 to 1.5xi023 H atoms cm ". There is a

suggestion that sometimes N X < NH. It may he concluded

that on those occasions a spurious soft X-ray component

is present in the source, bearing close similarity with

Cyg X-I. When N X is large, self-absorption in an optically

thick gas is very likely to take place.

INTRODUCTION

Absorption of x-rays emitted by cosmic sources is due to photoelectric

effect, mainly taking place in medium Z-elements (C, N, O, Ne, Si---).

Interstellar extinction is produced by dust grains which are mostly

built from some of the same elements (C, O, Si---). Consequently, one

may expect both attenuation effects to be correlated, and indeed it is

observed to be the case in the galactic plane, for distances ranging from

*NAS/NRC Research Associate. On leave from the French Atomic

Energy Commission.
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some hundreds of parsecs to a few kiloparsecs of the sun.

Interstellar matter column density to an X-ray source can be evaluated

whenever it is associated with a well-defined object for which a color

excess can be assigned. Such a case is exhibited by Cen X-3, which

is a compact X-ray source forming a binary system with an OB Ib super-

giant star. The color excess, EB_ V = 1.29, is one of the largest

observed in identified X-ray sources. The determination of the inter-

stellar matter column density independently of X-ray observations allows

an unambiguous assessment of the spectrum of the source to be made.

X-RAY ABSORPTION

Absorption of X-rays in interstellar space is due to photoelectric inter-

action. It is practically independent of the physical state of the matter

(solid, gaseous, or ionized), provided the K-electrons are not stripped

from the nuclei. The cross-section _(E) of a mixture of elements with

universal, or cosmic, abundances is represented in figure i. At photon

energies E _ 0.5 keV, elements with Z _ 16 are obviously dominant, and the

large contribution of oxygen is due to its large relative abundance,

A = 8.9 x 10 -4 . It is usual practice in X-ray astronomy to parametrize the

observed spectra using some simple function (free-free radiation, black body,

power law), and to introduce a low frequency cut-off produced by a column

of intervening cold matter, N X. It must be clear that (i) N X is expressed

in H atoms cm -2 and explicitly relies on the assumption that universal abun-

dances hold, and (ii), other mechanisms inherent to the source may contribute

to the cut-off, as, for instance, a non-negligible optical thickness. The

contribution of the true interstellar absorption to NX will be expressed as

NH in the sequel, based on qualification (i).

INTERSTELLAR REDDENING

Some of the medium Z-elements which absorb X-rays in interstellar space are

believed to be the constituents of the dust grain which scatter light, giving

rise to interstellar extinction, Av, or reddening, EB_ V. It is indeed found

that X-ray absorption and interstellar reddening correlate surprisingly well

in the case of extended sources which are optically thin throughout the

X-ray range. In figure 2, the observed quantity N X is plotted as a function

of the color excess EB_ V for a sample of supernova remnants. The data are

those used by Ryter et al. (1975) in a similar plot, complemented by more

recent results from Moore and Garmire (1975) for Vela X, from Charles et al.

(1975) for Cas A, and from Hill et al. (1975) for Cas A and Tycho's super-

nova. The spectra of the sources are believed to be relatively well under-

stood and interpreted, and a strong case can be made that N X m N H. The value

NH/EB_ v = (6.8 +--1.5) x i0 el H atoms cm-emag -I (i)

is found, where N H includes any three forms of hydrogen, ionized, atomic,

and molecular.

THE COLUMN DENSITY TO CEN X-3

The spectral type of the star associated with Cen X-3 has been studied in

detail by several authors (see H. Mauder, this conference); the interstellar

reddening is EB_ _ = 1.29 to 1.30 mag (Rickard 1974; Mauder 1975). Thus
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equation i yields for the column density of the object

N H = 8.8 x i0el H atoms cm -e (2)

Since Cen X-3 is located at i0 kpc of the sun, but at _ii kpc of the

galactic center and at a distance of _ 60 pc of the galactic plane, the

line of sight to it crosses a region of the Galaxy which is large, but

which should not have properties much different of those prevailing

in the solar vicinity. For instance, the average density is <nH> = 0.28 cm "a

It is interesting to note that the column density of atomic hydrogen,

NHI , deduced from 21 cm observations is NHI = 4 x i0el H atoms cm -e

(Hindman and Kerr 1970), i.e. only about half the total hydrogen column

density. This result is in good agreement with the estimate that molecular

hydrogen is as abundant as atomic hydrogen (Hollenbach et al. 1971).

DISCUSSION

The values of N X which have been reported for Cen X-3 are listed in table i.

There are obvious time variations, which cover a wide range. However, there

matter. To the accuracy of proportional detectors, self absorption in an

optically thick source can easily mimic photoelectric absorption. For

instance, Giacconi et al. (1971) obtained very similar spectra (and a good

fit to their data), either assuming an optically thin source (kT -- 16 keV)

with N X = 1.5 x i02s H atoms cm -2, or assuming an optically thick source,

i.e. a black body (kT -- 3 keV), with N X = O. In this case, the spectrum

peaks at kT -- 6 keV, and the contribution of interstellar absorption to

the low energy cut-off is very small and unobservable. At the other extreme,

the value of N X reported by Bleeker et al. (1973) is so small that a spurious

low energy source is required to compensate for the effect of interstellar

absorption, although Long et al. (1975) have argued that in that particular

measurement, confusion with the local sky background might be important. (I)

Nevertheless, a soft X-ray excess seems to have been present again lately

during the OS0-8 observations, since the parameter N X appears to be clearly

smaller than NH (Swank et al., this conference).

Strong variations of the temperature and intensity of the X-ray emission

of compact sources are common, as are large changes in the optical thickness

of the emitting region. The latter are evidenced by the variability of the

low energy cut-off. However, there is growing evidence that a soft component

with kT _ 0.5 keV or so, seems to manifests itself sporadically. It has been

proposed to be a specific feature of one of the possible equilibrium state

of an accretion disk around a compact object (Thorne and Price 1975); it

has almost certainly been observed in Cyg X-I and in Sco X-I (Garmire and

Ryter 1975). There are now also indications that a similar phenomenon

might occur in Cen X-3, even though the observed pulsation sets stringent

limits on the size of the emitting region.

(1)A similar comment has been made by Dr. A. Bunner (private communication).
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Table 1

Some Values of the Parameter NX Representing the Low
Energy Cut-off of the X-ray Spectrum of Cen X-3

10-SIN x H atoms cm-2 Date of Observation References

6.3 _ 8.9 May 12, 1970

150 Jan-Apr 1971

15 N 150

0.5 _ 1 May 26, 1971

30 _ 40 Feb 13, 1973

30 _ 40 Nov 1, 1973

* July 16-25, 1975

Hill et al. 1972.

Giacconi et al. 1971.

Gursky and Schreler 1974.

Bleeker et al. 1973.

Margon et al. 1975.

Long et al. 1975.

Swank et al., this conference

10-_INHI _ 4 Hindman and Kerr 1970.

10-81NHI+H 2 = 8.8 this work.

*cannot be uniquely determined - low value for the pulsating component.

192



REFERENCES

Bleeker, J., Deerenberg, A., Yamashlta, K., Hayakawa, S., and

Tanaka, Y. 1973, Ap. J. (Letters) 183, LI.

Brown, R. L., and Gould, R. J. 1970, Phys. Rev. DI, 2252.

Charles, P. A., Culhane, J. L., Zarneckl, J. C., and Fabian, A. C.

1975, Ap. J. (Letters) 197, L61.

Fireman, E. L. 1974, Ap. J. 187, 57.

Garmire, G. P., and Ryter, C. E. 1975, Astrophys. Letters 16, 121.

Giacconi, R., Gursky, H., Kellogg, E., Schreier, E., and Tananbaum, H.

1971, Ap. J. (Letters) 167, L67.

Gur_ky_ R._ _n_ _chreier_ E. 1976, IAU Symposium 67_ "Variable Star_ and

Stellar Evolution", edited by Sherwood, V., and Plaut, L. in press.

Hill, R. V., Burglnyon, G., Grade_ R. J., Palmlerl, T. M., Seward, F. D.,

and Stoering, J. P. 1972, Ap. J. 171, 519.

Hill, R. W., Burginyon, G. A., and Seward, F. D. 1975, Ap. J. 200, 158.

Hindman, J. V., and Kerr, F. J. 1970, Australian J. Phys., Ap. Suppl. No. 18.

Hollenback, D. J., Werner, M. W., and Salpeter, E. E. 1971, Ap. J. 163, 165.

Long, K., Agrawal, P. C., and Garmire, G. 1975, Ap. J. (Letters) 197, L57.

Mauder, H. 1975, Ap. J. (Letters) 195, L27.

Moore, W. E., and Garmire, G. P. 1975, Ap. J. 199, 680.

Rickard, J. J. 1974, Ap. J. (Letters) 189, LII3.

Ryter, C., Cesarsky, C., and Audouze, J. 1975, Ap. J. 198_ 103.

Thorne, K., and Price, R. 1975, Ap. J. (Letters) 195, LI01.

193



A

OJ

0
m

W

rO

>

W

.J

I--
0
I--

4.0 --

3.5,--

3.0--

2.5--

_ I0 l

1.5--

1.0--

0.5 -

FROM FIREMAN 1974 AND
BROWN AND GOULD 1970

H+He

Cr

sir.,-

Mg

0

C N

I
I I _ I = = ,ll I I I [ I

0.1 1.0

PHOTON ENERGY (keV)

Figure i. The photoelectric cross-section of a mixture of elements with

cosmic abundances, multiplied by (E/ikeV) 3 , and expressed in units of
10 -22 crY. The absorption edges are labeled by the chemical symbol of

the relevant elements, Zi. The solid line represents the total cross-
section of the mixture, normalized per hydrogen atom. The light lines
represent the contributions of elements with Z _ Z..

I

I I I

I0

194



23
IO

'E

i

i

Q IV B

I
m

4,-
C

m

O

im m

=1
0"
Q) 21

I , I0 --

X
Z _

0.01

/
/

T
I
t

I I I n nnJJl n i I I ilnnl n n n
0.1 1.0

//

I ' hill
I0

COLO.Excesse.-vEmogl
Figure 2 Relationship between the parameter N. representing the absorp-

•

tion of X-rays by cold matter, and interstellar reddening, E_ V" Upward,
from left to right: Vel X, Cygnus Loop, Tau A, SN 1572 (Tycno), Cas A,

galactic center. The heavy line represents the relation N X = 6.8xlOeiEB_ V

H atoms cm -e. Most of the references are to be found in Ryter et al.

(1975). Newly published data are from Moore and Garmire (1975) for Vel

X, from Charles et al. (1975) for Cas A, and from Hill et al. (1975) for

Cas A and SN 1572.

195



RECENT UIIURU RESULTS ON CENTAURUS X-3

E.J. Schreier and G. Fabbiano
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Cambridge, Massachusetts 02138

A BSTRA CT

The current status of the analysis of Cen X-3 data from UHURU concerning
pulsations, orbital period and eccentmclty, and extended lows, are reviewed. The

The pulsed fraction (2-7 keV) is 70%-90% for single pulses but significantly less for
superpositions of pulses, due to variability in shape. The pulses are narrower at

higher energies with a correlated increase in fraction pulsed. The orbital period
is found to both decrease and increase with [)/p on the order of a few times 10-5

year -1. A three sigma upper limit on the eccentricity of. 003 is obtained; if no
significant periastron motion is allowed over two years, the upper limit becomes
• 0016. The orbital period is found to be detectable during some extended lows but

with a significantly decreased ratio of eclipsed to hon-eclipsed intensity. Two
transitions between normal high states and extended lows are studied, and a con-

sistent model is obtained in which extended lows are caused by both burying the source
in an increased stellar wind from the companion, and starving the source by
decreasing the stellar wind. Changes in fraction pulsed during transitions and

systematic differences in the harmonic content of the pulses are also found.

INTRODUCTION

TheX-ray source Centaurus X-3 occupies a central position in the study of
the binary X-ray sources. It was both the first source showing X-ray eclipses and

the first source (other than the Crab) with regular X-ray pulsations. Cen X-3 and
Her X-1 have been studied for some time, and recently 3U0900 - 40 was found to be

a pulsar as well. As is by now well known, the presence of a regularly pulsating

object in a binary system allows remarkably precise determinations of many of the

parameters of the system. Furthermore, the study of the binary X-ray light curves

allows for increased understanding of the properties of the companion star and of
the nature of the accretion mechanism.

In this talk, we will briefly review the current status of the analysis of
Cen X-3 data from UHURU, indicating some directions for future work and the

obvious extensions using current satellite experiments. In particular, we will

summarize the UHURU data over an approximately two year baseline (1971-1972)
concerning pulse period and shape, orbital period, eccentricity, extended lows and

transitions between high and low states, .and systematics of pulse fraction changes.
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PULSATIONPERIODANDCIIARACTERISTICS

Thetechniquefor determiningpulsationperiod(andsimultaneously,orbital
phase,velocityandmassfunction)byfittingindividualmeasurementsofpulsephase
tothebinaryDopplercurveis wellknown(seee.g., Schreieretal, 1972).Nine
independentobservationsof severaldaydurationswereeachfitted,theresultsare
shownin Figure1. Twopointsareworthyof comment:first ontheaverageover
thetwoyearbaseline,thereis asignificantspeedup,with[_/p_-3 x 10-4year-I;
andsecond,thespeedupis neitheruniformnormonotonic.Onatleastoneoccasion,
in 1972September-October,thepulsationperiodincreased.(Theerrorsoneach
pointareamicrosecondor less.) In comparison,HerX-1showsanon-monotonic
averagespeedupaswell, butahundredtimesless,with_/p _-4 x 10-6year-1.
Theimportantquestionofthecontinuityor discretenatureoftheperiodchangesis
currentlybeingstudied.Theaveragespeedupis indicativeofasignificanttransfer
of angularmomentum.Thus,eventhoughCenX-3showsstrongevidencefor stellar
windaccretion(seebelow),anaccretiondiskmayexist.

Thepulsedpercentageis typically70-90%for singlepulses;however,when
manypulsesaresuperposed( ~ 100seconds),thevaluedropsto 45-55%.This
indicatestheexistenceofvariabilityof pulseshapeonshorttimescales. Thiswas
apparentduringsomeobservationsin theveryearlyUHURUdata(Giacconietal,
1971;Schreieret al, 1972).Systematicsof pulsevariabilitywill bediscussedbelow.
Thereis alsoalargerpulsedfractionathigherenergies{10-20keV)thanatthelower
energies(2-6keV)(Ulmer,1975);alternatively,thespectrumis harderatthe
pulsationmaximum.

ORBITALPERIODANDECCENTRICITY

Comparingsuccessiveeclipsetimes, asdeterminedbythepulsationphase
fitting,accuratedeterminationsoftheaverageorbitalperiodcanbeobtained.Figure
2 shows the orbital period determinations during 1971-1972. In the course of the first
year, the period shortened with _/p _-6 x 10-Syear -1. There was then some evidence

for a smaller slow down, [_/p _ 1 x 10-5year -1. Because of the discrete sampling and

the small number of points, no more quantitative statement can be made.

The-eccentricity can also be determined from the Doppler fit to the pulsation

phases by looking for deviations from a sine curve. In the early UHURU analysis,
It was obvious that no significant deviations existed. However, by fitting the residuals

from the individual sinefits to the lowest order eccentricity term (twice the orbital

frequency), a three sigma upper limit of 0. 003 has been obtained. I_ no significant
periastron motion is allowed, i.e., if we require phase coherence of any eccentricity

effect, the three sigma upper limit is a factor of two lower. (Her X-1 shows a three
sigma upper limit of 0. 002 for eccentricity. )

LONG TERM BEHAVIOR

The long term behavior of Cen X-3 concerning extended lows and transitions

between states as studied with UHURU has recently been discussed (Schreier et al,
1975). We will just summarize the relevant points.
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1) Theorbitalperiodpersists(5+ 1cts/sececlipsedvs. 11i 1cts/sec
non-eclipsed) through at least some of the extended lows, indicating that the source

does not always "turn-of_' during these periods. The fact that the low state eclipse

intensity is less than the normal eclipse intensity indicates some correlation between

eclipse and non-eclipse intensity; the eclipse flux is not just a constant nearby source.

2) A transition from extended low to high state which was observed in 1972

July (Figure 3) is consistent with a stellar wind accretion model (Davidson and

Ostriker, 1973) with a variable wind density. The source first appears as a slight
increase in intensity at phase 0.5; this spike gradually increases in intensity, with
a small decrease in low energy absorption. There is siguificant absorption on the

shoulders of the spike. The pulsed fraction also increases in the course of the
transition.

3) An extension of the work by Pringle (1973), also discussed by McCray

(1974) le_ls to a model where a cold dense wind "buries" the source to produce this
kind of extended low (Figure 4). As the density decreases through a factor of 5,

the X-rays start to ionize the wind, first at phase 0.5 and then for successively

longer phase durauons, l_e hl_r_a_ in hl_ll_i_y u_ _h_ _ .............. _--
fraction is due primarily to decreased Thomson scattering, while the shoulders are

due to photoelectric absorption.

4) A transition from high to low observed in 1973 February (Figure 5) is
qualitatively different; the decrease is smooth, with no significant spectral changes.
It is estimated that a decrease in stellar wind and thus accretion by a factor of about

20 could "starve" the source to produce a second kind of extended low.

5) The overall model then is one in which the density of the stellar wind
from the primary can vary by close to two orders of magnitude_ At the extremes,
the source is in extended lows, either by starvation or by burying.

SYSTEMATIC PULSATION VARIA BILITY

An extension of the work above consists in looking for systematic changes in

the pulse shape at different times, as might be caused by changing density and

Thomson scattering. In particular, during the several interesting observing periods
discussed in Schreier et al, 1975, the harmonic content of the pulses were studied.
Each individual 20 sec observation was fit with the fundamental sine period and

several harmonics; the fractional power at each frequency, averaged over an orbital
period, is shown in Figure 6. In the 1972 July turn-on, it is seen that the power in
the fundamental increases much faster than the power in the first harmonic; at

the beginning when the source is first emerging from the wind, it is mainly double

pulsed. It is difficult to ascribe the effect to decreased Thomson scattering -- one
would expect the faster components to be affected more. It is interesting to compare
the relative pulsed fractions in 1971 December, a "normal" high state; it is seen
that by the end of the transition in July, the relative fractions were consistent with
this normal state.
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The1973Februaryturn-offdoesnotshowassignificantatrend. However,
it is seenthatthefirst harmonicis strongest(i.e. "double-pulsed"or stronginter-
pulse)andthatthereis someindicationfor increasedfractionpulsedasthesource
is"starved". In 1972,March,wherethesourceincreasedovertwodays,but
notnecessarilyaspartof atransition,nosignificantsystematicswereobserved.

Theprimarypointto emergethusfar is thatthechangesinpulseshape
cabotbeascribedsolelyto Scatteringbythewind. Theremustbeacorrelated
ehafigein theen_issionmechanismatthecompactobjectto causethevariations
in pulsed fraction.
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OSO-8 GSFC RESULTS ON CEN X-3

Jo H. Swank, R. Becker, Eo Boldt, S. Holt, S. Pravdo

R. Rothschild and P. J. Serlemitsos

NASA/Goddard Space Flight Center

ABSTRACT

Spectra of Cen X-3 during eclipse, in transition out of

eclipse, and during several later phases of the binary orbit

were obtained from quick look data of the July 16-25, 1975

observation by the Goddard X-ray spectroscopy experiment

on OSO-8. In the high state there was no absorption turn over.

Pulsations were present at least to 23 keV. The spectrum at

the pulse minimum was flatter above 7 keV than that of the

pulse peak. In transition out of eclipse Cen X-3 emerged above

a small low energy flux seen during eclipse. The observations

appear to indicate absorption by cold and ionized matter and the

presence of iron in the companion's atmosphere. Decreased

intensities were observed at late phases of some binary orbits

in some cases corresponding to dips. Absorption appears although

the low energy component remains. Variable features may be

interpretable as absorption and emission by iron and possibly

other trace elements.

INTRODUCTION

Cen X-3 was observed by the Goddard x-ray spectroscopy experiment for about

4 1/2 binary orbits in July 19750 The experiment has been described by

Po Serlemitsos (1975). Data was obtained for about 3 1/2 orbits with the

argon detector sensitive from 1 1/2 to 24 keV and for i orbit with the

xenon detector sensitive up to 60 keVo Preliminary results have been

obtained from the quick look data. Cen X-3 is known to exhibit a variety of

behaviors. 0SO-8 saw someof these and obtained detailed spectral

information.

CEN X-3 AVERAGE SPECTRUM

For parts of all the binary orbits observed Cen X-3 had an average spectrum

which was similar to the one shown in Fig. i observed with the argon detector

on July 18 or the one shown by P. Serlemitsos observed with the xenon detector

on July 16. The number spectrum is approximately described by the exponen-

tial function. The energy emission peaks at 6 keV. No fit to a thermal

bremsstrahlung spectrum with absorption by cold matter was acceptable over

the entire energy rangeo Good fits of that form are obtained for the energies

over 7 keV and reasonable fits for the energies over 4 keV, but the kT and

absorption cut off depend on the lower energy bound. For comparison the

absorbed thermal bremsstrahlung spectra are indicated in the figure for

typical parameters sometimes seen. The July 18 average spectrum included

_ .58 photons cm-Zs -I from 2-6 keV.

2O7



CEN X-3 PULSE SPECTRUM

Our quick look data shows a single pulse with a fast rise and slow fall

similar to the one seen by Uhuru in 1972 (Schreier et al. 1975)o Usually

we see about 60% of the power pulsed from 1.4 to 24 keVo For one binary

orbit we have real time data and can construct either spectra as a function

of the pulse phase or pulse profiles for selected energy intervals. The

flux is clearly pulsed up to 24 keVo

Fig. 2a shows the spectra of .6 sec at the pulse peak and .6 sec at

the minimum. The peak spectrum is steep while for energies above 7 keV

the minimum spectrum is relatively flat, falling like E"_ . If the minimum

spectrum represents largely scattered radiation the spectrum has been

modified.

If the minimum spectrum is an unpulsed component the contribution of just

the pulse can be obtained by using the minimum spectrum as background°

The results are shown in Figo 2b for the peak and for o6 sec a half pulse

period later on the shoulder of the peak. These results are free of any

background contribution° If the peak spectrum for energies greater than

4 keV is fit to a thermal spectrum with absorption the best fit parameters

are kT = 15 keV and E a = 3.5 keV with X e = 22 for I0 degrees of freedom

The fit is not really good for energies above 15 keV and departs radically

below 4 keVo The lowest energy points may be adjusted in a final analysis

by perhaps 20%, but probably not enough to give a good fit of this form°

ECLIPSE

We have observations during 2 eclipses, all during the second half of the

eclipse° The average of these is shown in Fig. 3a. The flux did not vary over

these observations more than could be accounted for by our present

uncertainty in aspect° This flux amounts to .022 photons cm-_s -I from

2-6 keVo We cannot at present rule out contamination by 3UI134-61 which

Uhuru saw as a i0 count s -I source. At that level it could contribute N

1/3 of the flux we see during eclipse° However, the observed flux is near

the lowest observed by Uhuru during eclipse (Schreier et al. 1972), so that

the contamination cannot be large. The spectrum fits a power law of index

2 or a thermal bremsstrahlung spectrum of kT N 6 keVo In this average flux

no line emission is observable.

TRANSITION FROM ECLIPSE

For the transition from one eclipse we have data for the first 20 minutes

after a pulsed signal is observed. The observed flux is shown in Fig° 3bo

The flux observed during eclipse is still present. If we use as background

the observations from the eclipse immediately preceeding this observation

we have the contribution due to Cen X-3 shown in Fig. 3c.

The contribution due to Cen X-3 can be fit to the high state spectrum

absorbed by _ 7xl_ _ cm -_ equivalent hydrogen atoms of cold matter with the

the abundances of medium elements taken from Brown and Gould (1970) and
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the iron to hydrogen ratio _ 3xlO -5 (Cameron 1970). The column density

of electrons required to bring the highest energy channels down from the

level observed in the state of highest intensity is N l_7xlO-e4cm -2, so

that more than a half of the absorbing material is ionized.
I

For the transition from a different eclipse the pulse and minimum spectra

were obtained for a sequence of later phases as shown in Fig. 4. The

pulse and minimum spectra continue early in the transition to show the same

low energy component at nearly the same level as seen during the

eclipse° As the transition continues a pulsed low energy flux

appears and the low energy contribution to the minimum flux increases.

The latter could be either scattered radiation originating on the

compact object or more of whatever appears during eclipse. The

spectra of the minima seem to exhibit the same absorption cutoffs as

do the peak spectra, indicating if it is scattered radiation that

the scattering occurs closer to the compact object than the absorbing

atmosphere.

If the observations during the minima are used as the backgrounds for

these pulse peak observations, the spectra shown in Fig. 5 result.

By comparing these with a pulse spectrum at the highest level of

emission we can estimate the number of ionized and unionized atoms

in the line of sight and trace these numbers the transition proceeds.

Over the _ 1 3/4 hr of the transition the column density of cold

matter falls from near 10_4cm -2 to less than lOe2cm-_. The column

density of electrons falls more slowly early in the transition. It

does not seem possible to choose the parameters in the model suggested

by Pringle (1973) of a Stromgren surface to match the observed changes,

if the density is inversely proportional to r e . The observations should

provide an accurate picture of the companion's atmosphere.

Some finer features in these spectra deserve but bare mention at this

time. An iron edge may still be observable at _ 7 keV. Emission features

may sometimes appear.

ABSORPTION DIPS

Whereas the absorption during transitions into and out of eclipse are

expected to provide information about the companion's atmosphere, the

intensity decreases at phases well away from eclipse carry clues about

the environs of the compact object, whether a disk, a wake, or both

exist° One quick look data include one observation with real time data

of a 6% intensity decrease at phase near °7 and a sequence of observa-

tions during one binary orbit when absorption dips seem to have occurred°

In Fig° 6 are shown the pulse and minimum spectrum for the observation

showing the small decrease in intensity from a high intensity level

immediately preceeding it. The pulse spectrum seems to show absorption

by cold matter. This spectrum can be fit to a thermal bremsstrahlung

spectrum with absorption by cold matter (although the high kT required

would probably prevent the high energy points from falling fast enough

at energies above 24 keV).

The accompanying minimum spectrum is for most energies of less intensity
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than that of the irmediately preceeding observation, but there is

relatively more emission in the regions near 8 keV and 2 keV, perhaps

indicating a complex situation. We do not yet have data for any later

phases of that binary orbit°

In an earlier binary orbit as sequence of observations about an hour

apart, from phase N °72 to N °83 found low intensity levels of 31%_

38%, and 18% of the high state with intervening highs of 47% and 54%,

suggesting the sort of dips which have been seen by Uhuru (Schreler 1975),

Copernicus (Tuohy and Cruise 1975), and Ariel 5 (Pounds et al. 1975), for

examples° The spectra of the levels at 47% and 54% were similar as were

those of the 31% and 38% levels. Examples of these two as well as of the

high state and the 18% level are shown in Fig. 7o

The spectrum of the highest of the reduced levels resembles the high state

spectrum for that orbit° If it is assumed to be related to it by absorption,

the optical depth is nearly independent of energy. The reduction would

require 2-6xlO_cm-_ of electrons in the line of sight.

In the intermediate case the optical depth seems independent of energy over

16 keV, increases as the energy decreases from 16 to ii keV and is flat

down to 5 keVo For the lowest energies a steep flux similar to the one

present when Cen X-3 was in eclipse is influencing the spectrum. But the

observations above 5 keV do not seem describable as a simple combination

of absorption by cold matter and scattering by ionized matter.

In the lowest case the optical depth more closely resembles the behavior

of the cross section for cold matter (with a column density of a few

xlO_Scm -_) plus electrons (with the column density of electrons up to

2xlOe4cm-2). The detector in this case has a 5 ° full width at half

maximum and could pick up 3Ui145-61 (at low efficiency). However the

pulsed fraction during the observation of the lowest intensity was about

50% and the non-pulsed part can nearly be accounted for by the steep low

energy flux. The latter is at a level only slightly greater than observed

in the other detector during eclipse. We did observe an eclipse with this

detector but as yet do not have the data.

SUMMARY

In summary these observations give some details to a view of the Cen X-3

system. We have a picture of the spectrum across the pulse. The variations

in the column densities in transition out of eclipse show the ionized and

unionized wind, with the companions atmosphere containing iron in a

reasonable abundance. The dip spectra indicate that the beam sometimes

traverses large column densities of ionized matter and probably sometimes

large column densities of cooler matter° More precise information should

be obtainable with further analysis and the remaining data from these

observations.
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tion by cold matter with Brown and Gould abundances is shown. (b) .6 a_ the minimum.
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PULSED X-RAY OBSERVATIONS OF CEN X-3 FROM ARIEL-5

I. R. Tnohy

University College London

Mullard Space Science Laboratory

Holmbury St. Mary, Dorking_ Surrey,

England _

ABSTRACT

The 4.8 second X-ray pulsations from Centaurus X-3 were monitored

by the MSSL collimated proportional counter on board Ariel-5 between

18-27 January 1975. Analysis of the source Doppler effect shows that the

the preceding 2.3 years. The Doppler analysis also yields updated values

for the binary phase aL_d period of Cen X-3. Phase zero occurred at

JD 2442438.628 ± 0.003 and the average heliocentric binary period between

October 1972 and January 1975 was 2.087129 ± 0.000007 days. Light curves

of the 4.8 second pulsations in the 3-9 keV band are characterized by

two pronounced peaks, in contrast with the single peak profiles observed

by Uhuru.

INTRODUCTION

A large fraction of the X-ray emission from the binary source

Centaurus X-3 is known to be emitted in the form of 4.8 second pulsations

(Giacconi et al. 1971, Schreier et al. 1972). The pulsations are believed

to result from accretion of material onto the two magnetic poles of a

rotating neutron star (Pringle and Rees 1972, Davidson and Ostriker 1973).

Recent X-ray measurements indicate that the accreting material is derived

from the stellar wind of the supergiant companion to Cen X-3 (Tuohy and

Cruise 1975, Pounds et al. 1975, Schreier et al. 1975). This paper

presents new observations of the Cen X-3 pulsed emission by the MSSL

collimated proportional counter on board the Ariel-5 satellite. Updated

values for thepulsation period, binary phase and binary period are

derived, together with 4.8 second light curves in the 3-9 keV range.

New Address: Downs Laboratory of Physics 320-47

California Institute of Technology

Pasadena, California 91125
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EXPERIMENT DESCRIPTION

he MSSL collimated proportional counter has an effective area of
90 cm and a field of view of 3.5 ° FWHM which is offset by 1.75 ° from the

satellite spin axis. In the spacecraft pulsar mode_ counts from the

detector are folded at a specified period into 16 phase bins for a pre-

selected integration time. The integration time is chosen to keep any

phase change during the measurement to a small part of one phase bin.

At the end of an integration period_ storage of the pulses continues

without interruption at the corresponding phase in the next set of 16

bins. A total of 128 separate light curves can be accumulated during

one satellite orbit_ but phasing information is normally lost between

successive orbits. The folding period is controlled by a 2.1MHz crystal

clock and is known to a precision of a few microseconds. Due to the

large storage requirements of the pulsar mod% no direct determination

of the counter background is possibl% nor is any spectral information

available. However_ the energy region of interest can be selected from

8 bands within the region 2-30 keV.

OBSERVATIONS AND RESULTS

Centaurus X-3 was observed in the pulsar mode frequently between

18-27 January 1975. A satellite folding period of 4.841768 seconds

was used and the integration time was set to 48.000 seconds (i.e._ 9.9

pulsation periods per individual light curve). Cen X-3 was typically

visible for 30 minutes during each orbit but the data often spanned a

period of up to 60 minutes_ depending on the source-Earth occultation

pattern. The double pulse structure from Cen X-3 was detected strongly

on N 30 orbits_ and due to the source Doppler effect (±6.7 milliseconds

change in pulsation period per binary period)_ the phase of the pulsa-

tions drifted by different rates during each set of orbital light curves.

The magnitude of the drift for each orbit was determined by introducing

a linear time displacement of At between the individual light curves

and summin_ all the counts into 16 bins for different values of At. A

value of X _ was derived for each At by testing the summed data against

the mean number of counts per bin. The best value of At and the associ-

ated uncertainty were determined from the resulting X 2 peak. Chi-squared

maxima ranging up to 650 were obtained_ but only distributions exceeding

X 2 _ 50 were useful in deriving a well defined value of At. The data for

each orbit were also subjected to a power spectral analysis by treating

the light curves as a sequential data set_ but this approach was not as

sensitive as the X 2 technique in determining the best value of At.

The best-fit At values yield the source Doppler curve directly when

expressed as the change in period per pulsation period. A phasing analysis

similar to that of Schreier et al. (1972) was applied to the data by fit-

ting a 4-parameter function of the form:

At = Ap - A sin -_- (t - to) ,
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where t is the mean observation tim% A is the half-amplitude of the

Doppler curve_ T is the binary period of Cen X-3_ to is the time cor-

responding to binary phase zero_ and Ap is the correction between the

intrinsic geocentric period of the source and the satellite folding

period. It was not necessary to allow for the small change in the

pulsation period during the measurements or the orbital velocity of the

satellite. The quality of the fit is illustrated in Figure i_ together

with the four best-fit parameters and a representation of the Cen X-3

binary intensity. The data points span 4.2 binary cycles and contain

several gaps due to different experiment operating modes_ Cen X-3 eclipse

or low source intensity. The residuals of the fit were less than the

error bars for nearly all data points and this resulted in a low value

for the reduced chi-squared (X_ = 0.4).

The values of the binary period and Doppler amplitude (Fig. I) are

in good agreement with the more precise results of Schreier et al. (1972).

The intrinsic heliocentric pulsation period of Cen X-3 at the time of the

Ariel-5 observation was 4.83704 ± 0.00004 seconds which is 3.70 ± 0.04

m_11_aonds 1_ _han the value of 4.840736 ± 0.000001 seconds measured

by Schreier (1975) in October 1972. The average decrease in the pulsation

period over the 2.3 year interval is therefore -1.6 milliseconds/year.

This rate is comparable with the figure of -1.5 milliseconds/year during

the previous 1.8 years (Gursky and Schreler 1974)_ and therefore indicates

a relatively uniform decrease in the pulsation period with time (see Figure

2). Significant positive and negative deviations from this linear trend

do occur however (Gursky and Schreier 1974)_ and possible explanations

for this behavior have been discussed recently by Lamb et al. (1975a).

The Doppler analysis also yields a new binary phase for Cen X-3 cor-

responding to the center of the eclipsed state. Phase zero occurred at

1975 January 26.128 ± 0.003 or JD 2442438.628 ± 0.003. This updated

phase reduces the accumulated uncertainty in the original Uhuru ephemeris

from 36 minutes to 4 minutes. Furthermor% the new phase can be used to

derive a recent binary period for Cen X-3 over the interval following

the last Uhuru phase zero datum of JD 2441599.60209 ± 0.00014 (Schreier

1975). The averave heliocentric period between October 1972 and January

1975 was 2.087129 ± 0.000007 days. Inclusion of this value on the plot

of Gursky and Schreier (1974) indicates an erratic_ but net long term

decrease in the binary period of Cen X-3 (see Figure 3). Various mechanisms

to explain the fluctuations in the binary period have been considered by

Sparks (1975).

An integrated 4.8 second light curve was generated for each satellite

orbit by using the measured Doppler curve to produce precise values of

At. Figure 4 shows three examples of the double pulse profile in the

3-9 keV range_ averaged over a time-scale of _ 60 minutes. The first

pulse is distinguished by a fast rise and slow fallj whereas the second

pulse is wider and more symmetric. The two peaks are equally spaced

(2.4 ± 0.2 seconds) and have average half-widths of 1.0 and 1.2 seconds.

The ratio of power in the first pulse to the second is typically

0.90 ± 0.05. It is not possible at present to derive accurate values
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for the total pulsed fraction from Cen X-3 due to the limited knowledge

of the detector background in the pulsar mode and the presence of a tran-

sient source in the field of view (Ives et al. 1975). However, the data

are consistent with a pulsed fraction in the range 30-60_ between 3-9 keV.

Schreier et al. (1975) point out that the true pulsed fraction tends to

be reduced when the data are folded over long intervals.

A few 4.8 second light curves were also obtained in the 9-16 keV

region. The double peak profile is clearly present in this energy range,

but detailed assessment of the pulse shape is precluded by insufficient

statistics. The data do suggest however that there is a greater difference

between the intensities of the two peaks in the 9-16 keV band than in the

3-9 keV band. If confirmed, this would imply that the two peaks have

different energy spectra.

The shape of the pulse profile remained relatively stable on a time-

scale of N 60 minutes for the duration of the Ariel-5 observations,

although small but significant differences can be seen in Figure 4 (in

the pulse shapes and in the level between the two peaks). As noted by

Schreier et al. (1975), the pulse profile exhibits considerable short term

variability. Successive 96 second light curves show pronounced changes

in the pulse shape, and on occasions, one or both peaks virtually dis-

appear.

The Ariel-5 pulse profiles agree well with the double peak structure

observed during a Caltech rocket flight (Long et al. 1975). However,

both the Ariel-5 and Caltech results are very different from the single

peak light curves depicted by Ulmer et al. (1974) and Schreier et al.

(1975), although the latter authors state that the emission from Cen X-3

was mainly double pulsed during 3 binary cycles in March, 1972. As

emphasized earlier, the integrated Ariel-5 pulse profile remained double

pulsed throughout the 10-day observing period. The observations there-

fore indicate that the variability in the average light curve is a

relatively long term effect. In this case, the pulse shape variability

may be related to stellar wobble of the neutron star and the extended

low behavior of Cen X-3 (Lamb et al. 1975b).
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CEN X-3

Discussion

N. Vo Vidal:

I would like to draw attention to the paper by Osmer, Hiltner and

Whelan (Ap. Jo 195, 705, 1975) concerning the radial velocity and the

spectral type of Krzeminsky's star. These authors claim an upper limit

of _ 50 km/sec in the radial velocity from absorption lines. This value

should be taken with great caution° Our experience shows that (due to

weak emissions) the line profiles change and that radial velocity measure-

ments reflect the shape of a particular line profile rather than true orbital

motion. As to the spectral type, image tube spectra are as good as direct

spectra for spectral classification as long as the differences in spectral

and luminosity classes can be detected on the spectra of standard stars.

This was the procedure used by us (Vidal et alo, Ap. JoLI91, L23, 1974) o

Unfortunately Osmer et al. did not notice that the He II lines k4200 and

4541 did show in our reproduced spectra and they disregarded the related

remarks in the text as well. Still, with these lines present it was

impossible to determine a spectral class earlier than 08 from our spectra,

as against 06 determined by Osmer et alo

H. Gursky:

I have a question and a comment to Schreier or Pounds° My impression

is that there is the following inconsistency in the Cen X-3 model° On

the one hand there is the large rate of spin-up of the rotation of the

X-ray source which requires a large transfer of angular momentum by the

accreting materialo As I understood the situation this is consistent with

the matter originating from Roche lobe overflow, but not from a stellar

wind where the outflowing matter does not have appreciable angular momentum.

On the other hand, the model Schreier and Dro Pounds presented to describe

absorption phenomena was a stellar wind model° My question is then is

there a real inconsistency here?

Y. Avni:

There is no real inconsistency since mass loss by a stellar wind and

corotation are no__!tmutually exclusive. There are two separate things that

should not be confused: (i) the shape of the geometry, as dictated by

the rotational angular velocity, and (2) whether the star overfills the

critical radius. The primary could be both corotating with an effective

radius close to the critical radius and transferring mass via a stellar

wind. This also answers another question raised earlier in this

session by Liller. As you may remember, Liller asked whether the stellar

wind mechanism requires the very large values of M x claimed by Mauder

using the tidal lobe approximation. Mauder's positive answer was

incorrect. Even with a stellar wind, the Roche geometry may be applied,

so that from the existence of the wind alone there is no need for large

masses. I will explain the situation with the masses in my talk at the

3U0900-40 session.
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SUMMARY OF SESSION ON CYG X-3

R. M. Hjellming ,

National Radio Astronomy Observatory

Charlottesville, Virginia 22901

INTRODUCTION

This summary of the workshop session on Cyg X-3 will obviously be a non-

X-ray astronomer's impression of what we have learned about this object.

Since it was only after the Cyg X-3 session was finished that I learned

that a summary from each session chairman would be required, I was not

taking the notes that would have been useful. Therefore my summary will

consist solely of the main points that stand out in my mind. In doing so,

I am sure that I will Inadvertantly be unfair to the work presented by some

_p=_cL_. =uL L,_ L=_u, I would ±x_e'" to discuss eight major aspects u£

our knowledge of Cyg X-3 without attempting to give specific credit to

par=icuiar individuals or groups.

THE PARTICLE ACCELERATOR

Although it is probably not the most important, the first point that I would

llke to emphasize derives mainly from the radio data on Cyg X-3.

We know from empirical evidence that much of the radio flaring of Cyg X-3

on time scales of hours to days is due to synchrotron radiation from relati-

vistic electrons. This then has the immediate consequence that one of the

maJorthings to be explained by any model of Cyg X-3 is the mechanism by

which 1042-1044 relativistic electrons containing 1037-1039 ergs of energy

are accelerated in the Cyg X-3 environment in a very variable manner to

radiate in regions of hlgh plasma and magnetic field density at distances

greater than 1014 cm from the central system.

UNIQUE XR'IR RELATIONSHIP

Cyg X-3 has a unique relationship between the observed X-ray and infra-red

emission. This is the only object yet known whlch exhibits synchronized

modulation of XR and IR emission, and it occurs with a rigid 4.8 hour

periodicity. This synchronization is and will continue to be one of the

principal problems for models of the source. This unique relationship

between XR and IR also provides great potential for IR investigation of

effects first seen at X-ray wavelengths. A case in point is the possible

17 day periodicity discussed for some of the X-ray data presented at this

workshop.

*The National Radio Astronomy Observatory is operated

by Associated Universities, Inc., under contract with

the National Science Foundation.
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STABLE MODULATION CYCLE

Many of the papers presented on Cyg X-3 make it clear that we now know

that the 4.8 hour modulation cycle has a surprisingly stable, asymmetric

shape. This is an important advance from the times when a simple sinusoid

was sufficient to fit the data. The work on the Cyg X-3 at a wide range

of energies has also shown that, to first order, the modulation cycle is

the same at all energies, that is, the X-ray spectral distribution is

roughly independent of the modulation cycle. This again plays a remarkable

constraint on models for the source.

TWO TYPES OF FLUCTUATIONS

It now seems to be fairly well established that at least two types of

fluctuations in mean level do occur in the X-ray emission from Cyg X-3.

The first type involves variations frequently seen in the high portion of

the 4.8 hour modulation cycle; and the second involves major changes in

mean level seen at least during the time of the major radio outbursts in

September 1972. The occurrence of a higher level of X-ray intensity at

the time of the radio outbursts is vaguely reminiscent of the transitions

in level seen in Cyg X-I.

POSSIBLE 17 DAY PERIODICITY

One of the more interesting developments reported at this workshop is the

evidence from two independent groups that there may be a 17 day periodicity

in the Cyg X-3 X-ray emission. From the data shown, the chances appear to

be good that the periodicity is real; however, there are some questions

remaining. One obvious question is whether it is a modulation in mean

level or perhaps a modulation of the fluctuations seen at the high portion

of the 4.8 hour cycle. In any case, the data to prove or disprove the

reality of the 17 day cycle will be in hand soon with all the X-ray

satellites currently in orbit. As mentioned above, there is also the ob-

vious interest in seeking signs of a 17 day cycle in the infra-red emission

of Cyg X-3.

SIGNS OF Fe LINE EMISSION

There is tantalizing evidence for an emission llne feature at 6.5 keV from

the Ariel 5 satellite data. Other data show no clear sign of this feature,

presumeable due to Fe. It should be one of the most important goals of

current and future X-ray observations of Cyg X-3 to establish the reality

and nature of this spectral feature. With so many cycles popping up in

the X-ray data, one of the more obvious questions is whether this feature

is variable in time.

CORRELATION BETWEEN kT and INTENSITY

Another major development discussed in this session is the evidence for

correlations between kT and I, that is, between the parameter of a

bremstrahlung fit to the Cyg X-3 spectra and the X-ray intensity. This
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has now been seen in at least two ways. First in the UHURU data showing a

rise and fall in kT during the September 1972 radio outbursts, and secondly

in more recent detailed studies of the spectrum of the source. Clarifica-

tion of what lles behind this apparent correlation will be critical to our

understanding of Cyg X-3° Explanation of this correlation should be a

major objective in models of Cyg X-3.

FUTURE OF COORDINATED OBSERVATIONS OF CYG X-3

Lastly, it seems well worth reminding ourselves of the uniqueness of the

existence of radlo-XR-IR correlations in Cyg X-3, and the potential this

implies for future coordinated observations. Because of this, and because

of the variety of phenomena found in the source, it is one of the few objects

where massive efforts at coordinated XR-IR-radio observations are likely

to bear fruit.
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THE RADIO SOURCES ASSOCIATED WITH CYG X-3

R. M, HJellming ,

National Radio Astronomy Observatory

Charlottesville, Virginia 22901

ABSTRACT

Some of the conclusions derived from the data on the

radio flaring of Cyg X-3 are summarized. In addition,

recent data showing that Cyg X-3 has both active and

"quiet" radio behavior are presented.

ine radio source associated with Cyg _-3 is one of the most in_eresuing and

most spectacular variables in the radio sky. It can fairly be described

as a nano-quasar, both because of qualitative behavior which is similar to

a quasar, though shorter in time scale by factors of I0-I00, and because

of the energetics involved in the synchrotron radiating particles that

dominate the radio behavior of both Cyg X-3 and the quasars. In this paper

some of the information derived from the data on the flaring Cyg X-3 radio

source is reviewed, and new studies of low level, "quiet" Cyg X-3 behavior

are summarized.

RADIOACTIVE CYG X-3

Since the initial observations of Cyg X-3 radio flaring events in September

October 1972, for which multi-frequency data (Hjellming 1973) are shown

plotted as a function of time in Figure i, this object has shown many per-

iods of wildly variable radloemlssion. The event of September 2-14, 1972

and the highly polarized event of May 1974 (Seaquist et. el. 1974) have

been subjected to the most extensive and useful interpretation. The papers

by Davidsen and Ostriker (1974), Gregory and Seaqulst (1974), and Marscher

and Brown (1975) have expanded upon and supported the early conclusion

(Gregory et. al. 1972, HJellming and Balick 1972) that an expanding,

synchrotron radiating cloud of relativistic particles is basically respon-

sible for individual Cyg X-3 radio flaring events. The gross energetics

of an event are roughly the following.

Something of the order of 1042-1044 relativistic electrons with energies of

1037-1039 ergs are supplied by the central object and radiate at radio wave-

lengths at radii in excess of 1014 cm where, at least initially, there are

magnetic fields of O.l-lO's gauss and electron concentrations (Ne) from

The National Radio Astronomy Observatory is operated by

Associated Universities, Inc. under contract with the

National Science Foundation.
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103-107 per cc. For events with large N e the radio emission is de-polar-

ized, and most events seem to be of this type; however, when N e is at the

lower end of the density range, the radio emission is highly linearly

polarized with a surprisingly stable position angle during the evolution

of an event. Most Cyg X-3 flaring events start out with a compact,

optically thick radio source, and, according to Marscher and Brown (1975),

free-free absorption and synchrotron self-absorption are competitive at

all frequencies. The cloud or clouds of relativistic particles then expand

with velocities of 0.01-.i the speed of light, and the radio source evolves

rapidly in time. The early portions of the optically thin decay of an

event show an exponential-like decrease which is due to the effects of

synchrotron energy losses in the radiating particles. However, as the

source expands, a power law decay takes over as adiabatic energy losses be-
come dominant.

The need for 0.1-10's gauss magnetic fields at radii greater than 1014 cm

from the center of the Cyg X-3 system is one of the main reasons for need-

ing some version of a strong stellar wind in the system, as first discussed

by Davidsen and Ostriker (1974), to carry fields originating in the central

system out to the radio-emitting regions. The only other option would be

to postulate a dynamo mechanism for the magnetic fields; however, no models

of this type have been suggested.

RADIO QUIET CYG X-3

Less understood is the low level, quiet behavior of Cyg X-3 radio emission.

The most extensive body of data on this was obtained in September 1974

(Mason et. al. 1976) when a coordinated campaign of radio, X-ray, and infra-

red observations was rewarded not with extensive data on Cyg X-3 flaring

behavior, but rather with a roughly three week period of low level behavior

at radio, XR and IR wavelengths. The contrast between this and the normal

flaring behavior is most striking in the radio region. Figure 2 shows a

plot of the radio data at 2695 and 8085 MHz as a function of time from

September 7 through September 29, 1974. Noting the different ordinate

scales in Figures i and 2, the contrast different ordinate scales in

Figures 1 and 2, the contrast between the radio active Cyg X-3 and the radio

quiet Cyg-3 is obvious. The data in Figure 2 show both slow variations in

the mean level for each day and modulations about that mean on each and

every day. The slow variation in the mean radio flux levels is best shown

in Figure 3, where the averages for each day, and the associate spectral

index, _ = log (S(8085)/S(2695))/log(8085/2695), are plotted as a function

of time. There is no doubt about a slow evolution of the mean spectral

index from roughly 0.3 to roughly 0.4 over a three week period, and the

mean radio fluxes on each day are not entirely independent of each other.

Thus some major parameter of the environment of the radio source evolves on

times scales of a few days to weeks.

The unusual stability of the Cyg X-3 radio source during September 1974 is

further emphasized by the data on the radio spectrum taken during this

period, as shown in Figure 4. In Figure 4 the sparse data at 1.4 and 80

GHz are shown together with matching data (Mason et. al. 1976) at 2.7 and
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and 8.1 GHz - with the total range of variation at the latter two fre-

quencies during September 1974 indicated by arrows.

The data on the radio quiet has not yet been subjected to extensive inter-

pretation. Although it would be simplest to assume that the low level

Cyg X-3 radio emission is just the superposition of large numbers of mlna-

ture versions of the large Cyg X-3 flares, different models should be con-

sidered seriously. This is largely because of the much longer time scales

for the evolution of the "mean" radio source as discussed above.
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230 24.0 25.0

UT SEPTEMBER. 1974

Figure 2. - The radio flux densities of Cyg X-3 at frequencies of 2695 and

8085 MHz are plotted as a function of time for the period September 7-29,

1974.
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OBSERVATIONS OF CYGNUS X-3 BY ANS

A.C. Brinkman, J. Heise, A.J.F. den Boggende

R. Mewe, E. Gronenschild, H. Schrijver

Space Research Laboratory

Utrecht, Holland

ABSTRACT

The medium energy detector (I-8 keY) on board the

ANS has observed Cygnus X-3 twice so far, in November

1974, May 1975. The average intensity during the

first observing period was very high (about 375 UHURU-

counts), during the second observing period the count-

rate was more usual (195 UHURU-counts). Spectral

parameters have been determined by fitting the count

hi_teg_°m= _ _h_nr_eal nhoton number spectra. The

established 4.8 hour period appears to be stable over

the total observed period of 4 years.

INTRODUCTION

The'medium energy (I-8 keY) detector on-board ANS has observed

Cyg X-3 in 1974 from November 18 until November 22 and in 1975

from May ]9 until May 23. The data of the Cambridge instrument

(1.5 - 28 keY) on-board ANS, will be discussed separately by

D.E. Parsignault.

INTENSITY AND SPECTRAL MEASUREMENTS

During the November period of observation the intensity of

Cyg X-3 appeared to be unusually high. In order to study the

well-known 4.8 hour period and to determine the average intensity, _,

all data points with low errors were folded modulo the 4.8 hour

The formula used in folding is I = a + b sin [_(t-T ) - _.period.

The period, P = 0d.19968li was taken from Leach et al. 1975_

The result of the folding is given in figure |. Also drawn in

are the data points with large errors which did not take part

in the folding. The average intensity is 16 counts sec-I (about

375 UHURU-counts), one of the highest intensities of Cyg X-3

observed so far. The relative amplitude _ is 54%.
A sudden drop in intensity was observed on November 19 between

12h20 m and ]2h26 TM. The eountrate in the 1.5 - 8 keV energy range

changed from 14.42 + 0.88 c/s to 10.2 + 0.82 c/s within 5

minutes of time. ThTs is indicated in Tig. I, as a long vertical

bar around 2.8 hours. The decrease was not seen in the I - 28 keV

detector of the Cambridge group, which was measuring simultaneously.

This may be explained by the different spectral sensitivity.
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If we look at the light curve, it appears that there are a

number of measurements, prior to this intensity change, which

do not fit the folded light curve well. The intensity of all

these points seems about one value of o too low. Due to un-

favourable observing conditions such as high particle background

and large off-set from the source, all of theSe measurements

have large errors.

The data has been fitted to theoretical photon number spectra.

The best fit was obtained with a black-body spectrum. The para-

meters are kT = 1.15 + .05 and NH = (3 + .5) x 1022 atoms

cm-2. All data used t_ derive the parameters were taken after

the sudden intensity change described above. Unfortunately no

spectral date is available before the intensity change, to

look for a possible spectral change associated with the inten-

sity change.

A number of measurements were taken in the high time resolution

mode (time resolution .125 seconds) in order to search for

periodicities. Power spectral density analysis was carried out

for ten measurements of typically 300 seconds each. No periodi-

cities in the range from .250 sec up to about 75 seconds were

found.

During the May period, the intensity was equal to the UHURU

intensity. Again the date points were folded modulo the known

period, see figure 2. The average countrate is 8.5 counts

sec -I. Due to the much higher density of data points in May,

the time of minimum epoch, To, could be established rather

accurately. By combining our To, with the earlier data of

Leach et al., it is possible to slightly improve the accuracy

of the period. If one assumes no sudden change in the period,

which is reasonable in view of the rather good long term

coverage of the source, see e.g. paper of K. Mason this

conference, the period and error becomes .199681| + |0 x |0-7

instead of .1996811 + 16 x 10 -7 .

In order to look for--possible spectral changes associated

with the 4.8 hour cycle, we divided the data into 3 sets

according to intensity. There is no indication of a variation

in spectral parameters with the 4.8 hour cycle. The best fit

for each set as well as for the total data to_ether, yields

kT = 1.45 + .05 and N_ = (3 + .4) x tO22 atoms am -2.

The sensiti--vity of our highest energy channel is too low to

make a significant statement about possible Fe-line emission.
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Figure I, the Cyg X-3 intensity as observed in November 1974
folded modulo the 4.8 hour period.
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EVIDENCE FOR A 17d PERIODICITY FROM Cyg X-3

S. S. Holt, E. A. Boldt and P. J. Serlemitsos

Laboratory for High Energy Astrophysics

Goddard Space Plight Center, Greenbelt, Maryland 20771

L. J. Kaluzienski and S. H. Pravdo

Department of Physics and Astronomy

University of Maryland, College Park, Maryland 20783

A. Peacock, M. Elvis, M. G. Watson and K .A. Pounds

Department of Physics

University of Leicester LEI 7RH

Cyg X-3 (3U 2030+40) has exhibited phenomena which are observa-

tionally unique among identified x-ray sources. The giant radio

flare of 1972 is, perhaps, the most spectacular such anomaly, but

there are others no less unusual. A wide variation in x-ray spectra

has been observed, including the identification of x-ray emission

lines at some times, and consistency with a black-body at others. _

The _ sinusoidal 4.8h variation 2 is at a period far in excess of any

rotation period which has been ascribed to the compact merabers of

other binary sources, and at least four times shorter than any com-

parable orbital period. Models have been constructed which identify

the 4.8h variation with orbital period s'4's, acknowledging the peculiar

geometries which could give rise to a smooth 4.8h effect in observed

x-rays. The present data indicate that a much longer periodicity of

_lTd is also characteristic of Cyg X-3.

The Ariel-5 All-Sky Monitor, from which most of the present data

are taken, has been described in detail elsewhere s . The important

parameters are an effective pinhole area of 0.6cm _ in the energy band
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3-6 keV, an average duty cycle for source observation of 41%, and no

temporal resolution finer than I00 min. Typically, _i0 Cyg X-3 counts

are accumulated each i00 min. orbit in a resolution element of spatial

dimensions _10°xl0 °, with a background of _2 counts.

Figure i is a useful verification of experiment performance on

Cyg X-3. Single-orbit data from _i00 days are plotted modulo 4.8h

from Cyg X-3 and, as a control, Cyg X-I (with which it might conceivably

be confused with resolution elements centered _i0 ° apart). Data poin=s

are accepted only if they represent an unambiguous decet-mination of

source intensity (i.e. there is less than a 10% possible contribution

from other sources, and the intensity is at least twice the estimate_

one-sigma error after all corrections have been applied), in folding,

the data from each i00 min. accumulation are tagged with the orbit

midtime. Each bin in Figure I is statistically independent from the

others, as an orbit contributes to only the bin that contains its kid-

time (even though the data are accumulated over the equivalent of 3-4

bins). The smooth light curve obtained for Cyg X-3 is r.ou, therefore,

an artifact of the folding procedure. Both the shape (and phase) are

in excellent agreement with the results of ref. 7, indicating that the

present measurements are consistent with their period (and error) of

0.1996811 + .0000016d.

Additionally, there is considerable variability in the day-to-day

intensity of Cyg X-3, as evidenced by Figure 2. This behavior is in

marked contrast to the constant (within the relatively poor statistics)

day-to-day nature of Cyg X-I measured simultaneously with the same

experiment s . There is, however, some indication of regularity in the

Cyg X-3 variations, as illustrated in Figure 3. As the Cyg X-3 data
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from individual orbits do not always satisfy the 2_ condition, the

All-Sky Monitor data used in both Figures 2 and 3 are derived from

½-day accumulations which are then analyzed in exactly the same way

as are the individual orbits. It is not possible to unambiguously

compensate completely for the 4.8h variation in the construction of

these Figures, so that n__oattempt has been made to do so. This variation,

as well as gaps in the finite data string and an apparently erratic

source behavior, result in many periods in excess of a few days which

_lgure _ are among the more pronounced maxima). ±he _/_ e_e=L i_

not only the most significant s$atistically, but also exhibits a

roughly symmetrical X _ distribution which has a width commensurate with

the length of the data sample. On the basis of Figure 3 alone, we

would estimate a period of 16.9 _ .3d and a phase at maximum of

JD 2,442,387.5_2 near the most pronounced peak of Figure 2, where this

phase is estimated from the peak in the total data string folded at

16.9d.

Figure 2 also contains data from the Ariel-5 Sky Survey Experiment

against which the 17d hypothesis may be tested. It is important to

note that the latter measurements are obtained in the gaps of the All-

Sky Monitor coverage, as the two experiments possess mutually exclusive

fields-of-view. All the data are generally consistent with the dis-

played grid of 16.9d, but it is clear that the effect is not completely

reproducible. Almost all of the apparent maxima fall relatively close

to the grid, but they are not always clearly defined (and are some-

times absent).
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We have attempted to test the 17d hypothesis with older data in

the literature, with inconclusive results. Ref. I contains a point

measurement of high intensity (,TO 2,441,959.65) and one of low inten-

sity (JD 2,442,323.71) just prior to the commencement of Ariel-5 operation.

Older relatively high intensity measurements from _HURU v are

JD 2,440,988.5 and JD 2,441,450.0. A period of 17.05d, at the phase

determined by the All-Sky Monitor folding, results in all three

historical "maxima" falling at a phase within _ .05 of the expected maximum

¢entroids, while the "minimum" falls more than 0.3 away. In view of

the fact that the present maxima are not as precisely locatable (the £ime_ of

the older measurements are determined by the reported midtimes of the

observations only), we expect that this agreement is fortuitous. It

would appear that the reality of the 17d effect can be tested only by

continuous observation over another year or so.

In Ref. I, the authors point out that the "high intensity sta$e"

of Cyg X-3 is relatively well-fit by a structureless black-body, in

contrast to the considerably more complex spectra observed in lower

intensity states. They further suggest that the total source luminosity

is close to Eddington-limited, and approximately constant regardless of

spectral form. This interpretation of "high intensity state" is, _here-

fore, a manifestation of the relatively better efficiency of contem-

porary experiments near the black-body peak than at higher energies.

We are assuming here that this interpretation is correct, and that _he

times of Cyg X-3 maximum correspond to increased electron scattering

in the source.

One possible explanation would arise naturally if the 17d effect

was the orbital period of the binary system containing Cyg X-3. In

248



this case, however, the stability of the 4.8h variation (which would

now be interpreted as a slow source rotation) would seem to severely

constrain this hypothesis. No apparent 17d Doppler variation in the

4.8h modulation is detectable in the present data (VxSin _ < 300 _n/sec),

and it is difficult to account for the long-term stability of this period

unless the surface field is much lower than that expected if the observed

4.8h modulation arises from rotation.

A less drastic suggestion (i.e. one which does not alter the

identification of 4.8h with the orbital period) is that the 17d effect

is analogous to the 35d variation in Her X-I (c.f. ref 9). The con-

sistency of both Cyg X-3 and Her X-I with contact-binary models (in

con=rest to Ehe supergian=-sEeiiar-wind models reconcilable winh the

mass source in other identified x-ray binaries) makes this conjecture

attractive. It is interesting to note that the interpretation of

this effect in terms of free precessio_ °_I does not necessarily require

a neutron-star source for Cyg X-3 just because the 17d and 35d time-

scales are comparable. A precession period of 17d is entirely consistent

with either a neutron star with rotation period _i sec, or a white dwarf

having a rotation period of the order of minutes. Its interpretation in

terms of the precession of the primary member of the binary system (c.f.

ref. 12) is likewise insensitive to the nature of the secondary, While

it does not appear that the 17d effect can unambiguously distinguish

between a white dwarf and a neutron star, the inferred high luminosity

and relatively hard spectrum out to N 40 keV would seem to favor the

latter.
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SOME FEATURES OF THE X&KA¥ SOURCE CYG X-3

Keith O. Mason, Peter Sanford and John Ires

Mullard Space Science Laboratory,

University College, Lmmdon,

Holmbury St. Mary, Dorking, Surrey, U.K.

ABSTRACT

Data from the Copernicus satellite a_e presented whlc_'

show that the 4.8 hour light Qurve of Cyg X-3 has been

relatively stable in period, shape and amplitude since

_ne observation 0£ the firsL 6ieuiL radio outburs_ in

1972 September. A pulse height spectrum of the source

obtained by the Ariel 5 satellite in the 1.5 to 26 key

ener_ band shows convincing evidence for line emission

at about 6.5 key. The strength of this feature varies

in phase with the 4.8 hour continuum modulation, but

there is no simple _ long term relation with the mean

contimatm/ intensity per 4.8 hour cycle. Evidence will

be presented which indicates that the average 2-6 key

intensity of Cyg X-5 has been higher by a factor of

--5 since the onset of the radio flares.

Cyg X-3 is a powerful and complex source at X-ra_, infra red

and radio frequencies. In this paper we would like to draw attention

to three particular aspects of its X-ray Behaviour: i. The relative

stability of the 4.8 hour light curve! 2. the presence, on occasion,

of an emission feature in the X-ray spectrum! and 3- the existance

of a correlation between the level of radio activity and the 2-6 key

X-ray intensity.

To illustrate the first point, figure i shows Cyg X-3 data

collected with the M.S.S.L. X-ra_ telescope onboard Copernicus between

September 1972 and Ma_ 1974. The 4.8 hour modulation is obviously
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present during each observation, but with long term changes in the

source output superimposed. The best fit parameters of the modulation

as derived from four years of Copernicus observations are

Epoch

Period, P

= JD 2,442,147.995 ± O.002

= 0_1996846__0_0000008

! d_fP < 3 .lO-13 s-I
P dt

and we have folded the data of figure I on this best fit period.

The result is shown in figure 2 (histogram) and reveals that the mean

light curve is asymmetrical, with a sharp fall to minimum, a slower

rise, and a relatively broad maximum. There are no large scale fluctuations

in the curve on a timescale shorter than the modulation period. The

filled circles in figure 2 show a similar mean light curve for a period

(September 1974) when the overall 2.5-7.5 kev flux of Cyg X-} was low.

These curves have been normalized to the same flux level so that they

might he compared, but the intrinsic difference in source strength

between them is almost a factor of 5. Of the order of twenty-flve 4.8

hour cycles of data have gone into each. The two curves are remarkably

similar; in particular they have the same degree of asymmetry and the

same depth of modulation. We would assert, therefore, that over the

4 years that Copernicus has been observing Cyg X-}, the mean X-ray

light curve has not changed si6nificantly in period or shape, nor is

it affected by changes in the overall source output. This is not to say

that individual cycles are all typical of the mean light curve. Indeed

this is not the case, as is illustrated in figure 3, where selected

portions of data are compared with the mean curve. There are significant

variations, both in the depth of modulation and in the form of the curve;

in particular, the X-ray flux sometimes undergoes fluctuations of up to

_30% on a timescale of _30 minutes which are most noticable in the

rising part of the 4.8 hour modulation. The fact that fluctuations on

this timescale do not appear in the time averaged light curve suggests

that these features do not persist at the same phase for long periods.

Turning now to the X-ray spectrum, Cyg X-3 was observed in May

1975 with the M.S.S.L. experiment C instrumentation onboard the Ariel 5
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satellite. Experiment C is designed to provide detailed energy spectra

of X-ray sources in the 1.5 to 26 key range, and the results of two

days of observation of Cyg X-3 are shown in fi__re 4. An analysis of

these data has recently been published (Sanford, Mason and Ires 1975)

so we shall only dwell on the main features of the data here. The filled

circles in figure 4 are measurements made in high gain mode, the open

circles low gain, and the error bars represent + i sigma statistical

uncertainties. The most striking feature of the spectrum is the excess

of counts above a black body continuum in the region centered on _ 6.5

kev; at maximum, the data lies _ ll standard deviations off the continuum.

In addition, above I0 key there is an excess of energy above an

extrano]ation of the 2-10 kev suectrum.

The most likely interpretation of the count excess near 6.5 key is

that it is an iron emission feature. The energy contained in the feature

above the best fit continuu_m would then be O.18 ± 0.05 kev cm-2s -I and

its equivalent continuum width 0.53_+ 0.06 key. The observed FWHM of

the feature is consistent with that expected for a monochromatic llne

broadened by the counter resolution, and we can set an upper limit of

about 1 key on the intrinsic line width.

To determine the behaviour of the emission feature with phase in

the 4.8 hour intensity modulation, we divided our data according to

whether it was taken in the high or low intensity part of the cycle.

Plotted in figure 5 are the residual photon fluxes above the best fitting

2-10 key continua for each of the two intensity bins. The mean Copernicus

light curve is drawn below and indicates to which part of the cycle the

bins refer. It is evident from this diagram that the line is most

intense at the maximum of the 4.8 hour modulation, and this conclusion

is quantified in table 1 from which it can be seen that the equivalent

continuum width is the same, within the uncertainties, in both the

high and low intensity bin - i.e. the strength of the line is proportional

to that of the continuum.

The emission feature seen in the Ariel 5 data is almost certainly

the same as that observed by Serlemitsos et al (1975). However, the

Ariel 5 observation was made at a time when the 2-10 key flux from Cyg X-3

was relatively high, and this rules out a correlation suggested by
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Serlemitsos et al, between the presence of a line feature and the

occurance of the low 2-10 key intensity state.

Finally, figure 6 shows a compilation of Cyg X- 3 data taken by

several different observers between 1970 and 1975. Plotted as a function

of time is the average 2-6 kev flux per 4.8 hour cycle, and where the

original data do not refer to the 2-6 kev range, a correction has been

applied. The diagram indicates that the 2-6 key flux from Cyg X- 3 has

been systematically higher since the onset of the giant radio flares,

in September 1972, than it was during the _ 2 years previous to this.

Note that it is very unlikely the effect could be caused by systematic

differences between the various instr1_nents used to obtain the data,

since in several cases simultaneous or near simultaneous observations

have been made with two different instruments, and in each case there is

good agreement.

This result does not necessarily imply that the total X-ray flux

from Cyg X-3 increased. It is now well established (Leach et al 1975;

Serlemitsos et al 1975) that variations in the average 2-10 key source

strength are accompanied by changes in the spectral slope; for instance

comparison of the two spectra obtained by Serlemitsos et al (1975)

indicates that, while the 2-10 kev flux level differed by a factor of

3 (corrected for 4.8 hour phase), the total emission from the source

integrated to higher energies was about the same in each case.

However, whatever the nature of the X-ray variability, we must conclude

that there is now substan@ial evidence (cf. also Leach et al 1975)

that the Cyg X-5 radio flares are related to a change in the behaviour

of the X-ray source.
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OBSERVATIONS OF CYGNUS X-3 BY ANS

D.R. Parsignault

Space Division
American Science {md Engineering
Cambridge, Massachusetts 02139

and

E. Schreier, J. Grindlay, H. Schnopper and H. Gursky

Center for Astrophysics
Harvard College Observatory/

Smithsonian Astrophysical Observatory

Cambridge, Massachusetts 02138

ABSTRACT

The hard X-ray experiment (1 - 28 kev) on ASS observed
Cygnus X-3 in November 1974, and in May 1975. The

average flux intensities for these time periods were found
to be 22.4 z 0. 5 cts/sec and 12.8 + 0. 3 cts/sec (1.3 - 7.1
keY), the former being the higher-average value ever
observed. The spectrum studies have shown an excess in the
flux above the fitted continuum which can be interpreted as a
line emission of Fe.XC_IV and/or FeXX'V, at _- 6.5 keV. The
strength of this feature varied in phase with the 4. 8 hr X-ray

A

have refined the period of the X-ray modulation to 0. 1996813

+ 0.0000006 day and obtained at a 2 = upper li_nitto a con-
_muous change in the period of 5 x 10-13 sec-'. This new limit

places serious constraints on several models for this object

which have been proposed up to now.

INTRODUCTION

Cygnus X-3 has characteristics not found in any other of the galactic X-ray

sources. Its X-ray flux has been shown to vary almost sinusoidaUy with a unique period
of ~4. 8 hours, possibly the shortest of the X-ray binary stars, in the energy range from
2 to about 70 keV (Parsignault et al, 1972; Sanford and Hawkins, 1972; Canizares et 81,

1973; Ulmer, 1975; Leach et al, 1975; Pietsch et al, 1975). This object flares in the radio
band from time to time, becoming on these occasions one of the brightest radio source in
the galaxy. As with other X-ray sources, it exhibits a wide, but not extreme, range of
variability.
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With the Hard X-ray Experiment (HXX) instrumentation on board the Astronomical
Netherlands Satellite {ANS) we have observed Cygnus X-3 in November, 1974, and later in

May, 1975. Described here are the following investigations of the data:

1) We have refined the period of the X-ray intensity modulation and found a new

limit to any change in the period.

•2) We have found evidences in the X-ray spectrum for a significant excess in the
energy range 4. 6 - 7.2 keV which is consistent with FeXXIV or FeXXV line emissions.
Such a feature in the X-ray spectrum had recently been reported by Serlemitsos et al

{1975) and Sanford et al {1975).

3) We have found significant variability near the maximum of the 4.8 hours,
intensity variation which is not present near the minimum. This result may have an

important bearing on the geometry of the X-ray emitting region.

THE EXPERIMENT

The ANS was programmed to observe Cygnus X-3 from November 16 until
November 22, 1974, and at a later time, from May 14 untilMay 23, 1975. During

these time periods, monitoring of the X-ray flux from this stellar object was done using

the Hard X-ray Experiment (HXX), Large Area Detectors (LAD), to obtain an X-ray

lightcurve and spectrum information in the energy range of 1.0 to 28 keV. For a
description of the HXX instrumentation and of its in-flightcalibration, the reader is

referred to another publication (Gursky, Schnopper and Parsignault, 1975).

R ESULTS A ND A NA LYSIS

The 4.8 Hour Period

Figure 1 shows the X-ray light curves folded module 0.1996811 day (Leach et

al, 1975), for our November 1974 and May 1975 observations. Each point represents

an integration time of between 256 sec to 512 sec. The error bars represent lcr
statistical and aspect uncertainties. As seen in this figure, significant variability is
evident be_veen 0.0 and 0.6 of the phase, whereas no such variability is seen between

0.6 and 1.0 of the phase. For example, on November 16, around phase 0.05 - 0. 2,
the observations revealed an intensity at about 20 cts/sec, whereas a few days later

and at the same phase, the count rates were between 26 and 30 cts/sec. Furthermore,

the intensity peaked at about phase 0. 13 in that particular cycle of the 4.8 hrs variation.

We found similar examples in the May data: at phase ~ 0.4, several observations
showed a flux intensity of about 12 ets/sec, while two days later the count rates were

around 22 cts/sec at the phase. The variability is such that we do not see the "sinusoidal"

shape during individual cycles; rather only when the data are folded modula 4. 8 hours

does the envelope of the intensity variations define the sinusoid. This excess variability

can actually be seen in the first reported observations of the 4.8 hours periodicity
{Parsignault et al, 1972).

We have tried to further refine the period of Cygnus X-3 using the technique of
analysis descried in an earlier paper {Leach et al, 1975). We first fitted the data

toafunctionI=A 0 +A 1sin (_ (t-to) - _), with p=0.1996811days, thebest

period found by Uhuru. The results of these fitsare shown in Table 1.
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TABLE 1

Observation A 0 A I to A I/A 0

(cts/sec) (cts/sec) JD2, 440,000+

November 22.4+ 0.5 I0.'3+ 1.0 2370.447+ .005 0.46+ 0.05

May 12.8 +_0.3 4.9 +_0.6 2551.366 +_.005 0.38 +_0. 05

The errors shown are 1_ statistical errors, except in the case of the phase of

minimum intensity to where the uncertainty includes systematic errors for varying the
shape of the 4.8 hour X-ray modulation using the different shapes of the modulation
found in the Uhuru data an_ysis. We then refit each observation, varying the period P,

and considermg-i-_-f6"e total X_', we obtained for the period P = 0. 1999 + 0. 0002 days.

Finally, we divided the separation of the two minima by integer numbers of
periods, and obtained 3 possible periods within the overall range determined above;

namely, 0. 199690, 0. 199910 and 0. 200132 (l 0. 00008) days. Assuming the true period
to be close to the period, found by Uhuru, i.e., 0. 199690 day, we divided each time
i._¢_T.-__n]..'nthinTTh,r11f].mt.qand nur d.at_by this ueriod, and plotted the results, i.e.,

number of periods n versus time. We then fittedthese data points to tml n = to + v. n.
The results of this phasing analysis are presented in Figure 2, together with the residuals.

The period thus obtained is equal to

P = 0.199,681, 3 _ 0.000,000, 6 day.

The other 2 possible values for the period found in our observations could not

fitthe Uhuru data at all, and could only have given a good fitafter 1972, provided the

period of Cygnus X-3 had increased to one of these values in a step manner. Our data

cannot rule out the possibility of a change before 1974, but observations made a_er i972
by Mason et al (1975) showed that there was no such change in the period.

To investigate our data for evidence of a continuous change in the 4. 8 hours
period, we assumed a linear variation Of the period P = Pn + d (t - to) and we fitted the
form t = t o + Po n + 1/2 dP o n 2, to the values of t o, the times of the X-ray minima
from the Uhuru observations (see Table 1, Leach dt al, 1975) together with the t o

of the p4res-_-_-_CNS observations (Table 1). This fit gave a 26 upper limit for P/Pof
5 x 10 -13 sec -l.

The X-Ray Spectrum

U,sing the data from our 15 channel logarithmic PHA (1 - 28 keV), we investigated
spectrum variations as function of the 4.8 hour intensity variation. We divided the phase

into 10 bins, and our preliminary results show no systematic phase dependence of the
spectrum of the X-ray continuum. Some 30 individual spectra were summed up to obtain
an average spectrum. In boththe November and May data, we fitted the data to a thermal
bremsstrahlung plus a low energy cutoff, using the abundances of the elements as published
by Brown and Gould (1970). Table 2 shows the results for such a fit.
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TABLE 2

Temperature

Observation Ea(keV ) k T OK I(cts/sec}

November 2.46 + 0.11 2.84 + O. 29 3.3 x 107 22.4

May 2.89 + 0.10 3.35 + 0.25 3.9 x 107 12.8

The errors in the parameters are I_ deviations, corresponding to ×_'min + 3. 5

(10 degrees of freedom).

Both in the November and May spectra, we found a statisticallysignificant excess

above the fitted continuum in two of the energy channels, i.e., between 4.6 - 7.2 keV.

We then divided the data into two parts: 0. 0-0.65 and 0.65 - 1.0 (the '"nigh" and "low"
part respectively). We fittedthe spectra leaving out the two channels containing the

excess. For the "low" part of Ma_, we found the following parameters: E a = 2.95 +
0.17 keV, k T = 3.16 + 0.41, X = 14 (for 10 degrees of freedom), and I (the inte_'slty

of the feature) = 33 + 10_0 of the continuum, or an equivalent width of 0.87 +_0. 28 keV.
Figure 3 shows the experimental data and the best fit. Similarly, in the "high" part of

the light curve, we found the excess to be 26 + 7% in the energy interval, t.e., an

equivalent width 0.68 + 0.17 keV. In November, for the "low" and "high" parts, we
found an excess of 38 +_ 11% (X2 = 15) and 14 + 9_0 (X2 = 16) respectively, I.e., 1. 00 +
0.29 keV and 0.37 + 0.23 keV equivalent wtd-'ths.

Observations made few days apart of Cygnus X-1 and Cygnus X-2 didnft show

such an excess in this energy range, thus ruling out that this feature was an artifact
of the instrument.

DISCUSSION AND CONCLUSIONS

During our November observations the average X-ray intensity of Cygnus X-3

in the energy range of 1. 3 to 7.1 keV was the highest ever recorded: 22.4 + 0.5 cts/
sec ANS = 340 cts/sec Uhuru. This flux intensity is to be compared to the 245 + 11 cts/
sec recorded by Uhuru during the September 1972 radio flare. Unfortunately, there was

no radio coverage of this object during our period of observation; however, a few weeks

later a giant radio flare from this object was reported (Osawa, 1974). The May data put

again in evidence a rather high intensity state for Cygnus X-3: _ 200 cts/sec Uhuru. The

average spectra for November and May are characterized by temperatures of 3.3 and
3.9 x 107°K for counting rates equivalent to 340 and 200 cts/sec Uhurtu These temperatures

are consistent with the temperature of 4.3 x 107OK found for a 245 cts]sec intensity in

September 1972, and in agreement with the relation found up to now, by different observers
which relates the temperature inversely to the average intensity.

The 0.2 day X-ray modulation of Cygnus X-3 may be explained as the partial
eclipse or the changing aspect of an X-ray emitting cloud, or wind which has "buried"

the primary X-ray source. Pringle (1974) discussed such a model and ascribed the
modulation to a stellar wind in which the optical depth varied from vto r+ 1. Davidsen

and Ostriker (1974) described the system as containing an X-ray emitting white dwarf

enveloped in a thick stellar wind. The data presented here place certain constraints on
these models.

270



DavidsenandOstrikerassumed a massive white dwarf and derived an accretion

rate of ~ 10 -6 M®/year to obtain the observed power. However, they estimated the
mass loss from the system via the stellar wind, to be ~ 500 times this value or about

5 x 10 -4 M_year. On the basis of this number, we would predict a P/P - 2 x 10-4/
year, for an isotropic mass loss, (Batten, 1973) compared to our 2_ upper limit of
-_ 10 -_ Mo/year. Thus, our data are not compatible with the stellar wind described by

Davidsen and Ostriker. PrinCe's model, which make use of a neutron star or black hole,

requires .a much smaller loss rate of ~ 10 -6 M®/year which is just compatible with our
limit on P/P. However, the observation of excess variability at the maximum of the X-ray

modulation places serious doubt on any model which invokes scattering to modulate the

X'rays. This includes reflection models such as those proposed by Basko et al (1974).

These models invoke a scattering region of about 1Roin which the light travel time is

only seconds; in such a region opacity differences of hundreds and not near unity would
be required to smooth out the observed variability which is on a time scale of minutes

to hours.

Thus Cygnu.s X- 3 must be more comp!ex thanfirst !ma_gined. - It would appear

other X-ray sources, displays significant time variability on a time scale of minutes.
This source must be eclipsed during the observed minima, leaving behind a larger

X-ray emitting region which is either very opaque or which has a long cooling time

in order to wash out the intensity variations.
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THE 4.8 H VARIATION OF CYGNUS X-3 AT HIGH X-RAY ENERGIES

W. Pietsch, E. Kendziorra, R° Staubert and J. Truemper

Astronomisches Institut Der Universitaet Tuebingen

74 Tuebingen, Waldhaeuserstr. 64, Germany

ABSTRACT

On 1975 February 20, 14-19 HUT, the Cygnus region was observed in the

X-ray range 32-150 keV. The balloon payload was launched from Palestine,

Texas and floated in an average atmospheric depth of 2.4 g/cm 2. The

instrument was a Nal scintillation detector with 87 cm 2 effective area

and a 2 degree by I0 degree slat collimator in heavy anticoincidence

shielding. _ q _ h_,1_ _ "on-off" _ ...... _¢ .......... _ .... A _

Cygnus X-3 yielding a source spectrum between 32 and 150 keVo Also

an intensity variation has been found which is in phase with the low

energy X-ray 4.8 hour sinusoidal light curve. The relative amplitude

found in the energy range 32-64 keV is 0.37 (+ 0.31, -0.29) (Chisquare

for an energy dependence of the relative amplitude up to 64 keV.

*Published in Astrophysical Journal Letters 1976, 203.

**Now at Max-Planck-lnstitut Fuer Extraterrestrische Physik,

8046 Garching, Germany
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OBSERVATIONS OF CYGNUS X-3 FROM

A BALLOON-BORNE X-RAY TELESCOPE

G. R. Ricker, A. Scheep_ker +, J. E. Ballintine,

J. P. Doty, G. A. Kriss, S. G. Ryckman, and W. H. G. Lewin

Department of Physics and Center for Space Research

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

ABSTRACT

X-ray measurements in the energy range 20-150 keV were made

from a baiiuon-boLn_ Lel_scope on ±_,_ June _**_== _,_, _=_,

tered at phases 0.45, 0.60, and 0.70, respectively, of the 4.8 hr

cycle, were conducted. Each scan was _20 to 30 minutes in duration.

The observed relative intensity as a function of phase differs sig-

nificantly from previously reported X-ray measurements. Variations

in source int_nslhy vn c±m_ =u=i== ...............................

I. Introduction
°

The 4.8 hour periodicity in the intensity of the X-ray emission

from Cyg X-3 is well-established at energies less than 20 keY. A

very comprehensive set of low energy X-ray measurements spanning

two years of observations has recently been compiled by Mason et al

(lq7_%_ h_=N nr_m_r_]v nn Copernicus data. At hiaher X-rav

energies (>20 keV), the observational picture is less clear cut.

Ulmer et al (1974) established an upper limit on a possible 4.8

hour v_r---_ion based on OSO-7 data for energies greater than 22

keV. Recently, Piets'ch et al (1975) have claimed that the 4.8 hour

period in Cyg X-3 is detectable in the 29-70 keY range, based on

positive detections of rather low statistical significance (_2 to

4s data _oints). Using an instrument of large effective area

(_575 cm z) and low background counting rate (_4x10 -% photons

cm-2s-lkeV-l), we have recently measured the hard X-ray emission

from Cyg X-3 with improved statistical precision. In this paper,

preliminary results on the relative intensity as a function of phase

in the 4.8 hour period will be given. Analysis of our spectral data

within the 20-150 keV range is not yet complete, and will be pub-

lished later.

+Present address: Cosmic Ray Working Group

Leiden, The Netherlands

Supported in part by Ntional Science Foundation Grant MPS 75-02963

and National Aeronautics and Space Administration Grant

NGL 22-009-015.
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II. Observations

On June i, 1975, we observed Cygnus X-3 in the energy range

20-150 keV for %80 minutes during a balloon flight from Palestine,

Texas. The X-ray telescope consisted of phoswich detectors con-

signed to two independent banks which viewed the sky through 3°x3 °

FWHM and 1.5°x6°FWHM slat collimators, respectivelv. The telescope

was mounted in an altazimuth configuration. A 52.6 million ft

(1.49xi06 m 3) balloon, manufactured by Winzen Research, Incorporated,

carried the gondola to an altitude of 144,000 ft (43.9 km; _2.0

gm cm-2). The data were both recorded on board and transmitted to

a ground-based station. X-rays were recorded in eight energy channels

covering the energy range from %20 to 150 keV.

We used the drift scan technique in conducting our measurements;

viz., we aimed the telescope ahead of a source (in Right Ascension)

and the gondola was stabilized so that a source drifted through the

collimator fields-of-view at the sidereal rate, resulting in charac-

teristic triangle-like counting-rate plots. Figure 1 shows the

raw data from three drift scans over Cyg X-3 for one of our two de-

tector banks (_300 cm 2 effective area; 3°x3 ° FWHM collimator). A

scan over Cyg X-I was conducted between the first and second Cyg X-3

scans. The Cyg X-3 scans were centered about phases 0.45, 0.60, and

0.70 of the calculated (low energy X-ray) light curve. The reference

epoch and period used for our phase calculations were

JD%= 0 = 2442147_995±0_002 and P = 0_1996846±0_0000008, respectively.

This information was kindly provided by K. Mason, based on the

2.5-7.5 keV measurements from Copernicus.

The detection of Cyg X-3 is statistically significant at levels

of 6a, 14ai and 12a, respectively, for the three scans shown in

Figure i. Independent detections of comparable significance were

achieved in the other detector bank (1½°x6 ° FWHM collimator; data

not shown). Variations in the source intensity on time scales of

_minutes are evident; a complete analysis of these variations is

presently under way.

In Table i, we have compared the results derived from our

3°x3 ° detector bank (corrected for aspect and atmospheric depth

effects) with those from 2 other observations of Cyg X-3. For each

of the three sets of data, the reported intensities have all been

divided by the intensity at _ = 0.7 for the particular data set.

Thus, the tabulated intensities are all relative to _ = 0.7. The

differences in the three measurements is most striking at # = 0.45,

with the relative intensity determined in this experiment being

significantly lower than that reported in previous work.

III. Discussion

We find, contrary to the conclusions of Pietsch et al, that,

at least at the time of our observations, the high energy light

curve (20-150 keV) of Cyg X-3 differed significantly from the ac-

cepted, time-averaged low energy X-ray light curve (Mason et al

280



1975). Our findings would seem to support those models for Cyg X-3

which predict an energy-dependent light curve (Basko et al, 1974).

However, Canizares et al (1973) have found that there can be sig-

nificant variations in the shape of the light curve from one cycle

to the next at low energies (i-i0 keV). If this is also true at

higher energies, then further measurements with good statistical

precision, taken over a number of different cycles of the 4.8 hr

period, will be required to definitively answer the question: Is

the X-ray light curve of Cygnus X-3 different at high energies

(>20 keY) compared to low energies (<20 keV)?
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preparation of the gondola, and of P. Missel and S. Roby in the

data analysis, was essential. We wish to thank the personnel of

Facility for a flawless launch of the record-breaking balloon (the
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Table i: Relative Intensity of Cyg X-3 at three phase

points in the 4.8 h period.

Energy Relative Intensities

Time 9_
(keY) .%=. 45 ¢=. 60 _=. 70* 0bservatlon Reference

2.5-7.5 0.86+.05 % 0.94+.05 t 1 Sept 1974 Mason et al 1975

29 - 70' 1.21 tt 1.15 tt 1 20 Feb 1975 Pietsch et al 1975

29 - 150 0.50+.10 1.17_+0.09 1 1 June 1975 Present Work

Intensity normalized to unity for all observations.

tTable entry and its la statistical error estimated from data given

in Figure 9 of Mason et al, 1975.

ttTable entry estimated from fitted curve in Figure 1 of Pietsch

et al, 1975, with the epoch and period corrected to the improved

va---_rue of Mason (private communication; see text).
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ABSENCE OF IRON LINE EMISSION IN CYG X-3

S. Shulman, H. Friedman, G. Fritz and D. Yentis

E. O. Hulburt Center for Space Research

Naval Research Laboratory
Washington, D. C. 20375

and

W. A. Snyder, A. F. Davidsen and R. C. Henry
Department of Physics

Johns Hopkins University

Baltimore, Maryland 21218

ABSTRACT

An observation of Cygnus X-3 was made with

soft X-ray detectors launched on an Aerobee
rocket at 0500 U._ on 7 September 19Z4. A

blackbody spectrum with T = 2.2 x 101°K

(kT - 1.9 k_) an_ a hydrogen column density
of 2.3 x i0 _ cm -z fits the data reasonably
well. The iron line emission observed one

month later (Serlemitsos et al. 1975) and in

May 1975 (Sanford, Mason and Ives 1975) was

not found. A 3_ upper limi_ fo E this feature
in our data is 0.006 ph cm "z s" .

INTRODUCTION

Recently, Serlemltsos et al_ (1975) have reported two
rocket observations of Cyg _--3_ _eparated by about one year

in which they found significant spectral differences. In
their October 1973 data, at binary phase 0.81, the spectrum

was best fit by a blackbody with a temperature of 1.4 x I07"K
and a hydrogen column density of 2.7 x 1022 cm "2. Their
October 1974 observation, at binary phase 0.01, was sig-

niflciantly different. The intensity in the 2-6 keV band
was reduced by a factor of ten from their earlier observa-

tion, and the spectrum was bes= fit by thermal bremsstrahlung
with a temperature greater than 2.0 x 108°K and a hydrogen

column density of 7.0 x 1022 cm "2. They also detected iron

line emission at 6.7 keY with a line strength of 0.018
photons cm- s -_. May 1975 observations of iron line emission
together with a blackbody spectrum have been obtained with

Ariel 5 (Sanford, Mason and Ives 1975). These authors find
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a high average fl_x f_om Cyg X-3 and a line strength of
0.027 photons cm -z s -_.

OBSERVATIONS

An NRL Aerobee payload launched at 0500 U.T. on

7 September 1974 observed Cyg X-3 for 44 seconds. The
payload consisted of two proportional counters; one with a

3 ° (FWHM) field of view, the other with a 5 ° (FWHM) field

of view. Each had an effective area of 1200 cm2, a 2-micron

Kimfol (polycarbonate) window, and used PIO gas (90% Argon,
10% Methane) at 15.5 p.s.i.a. Figure I shows the count-

rate as a function of time throughout the flight for the
3 ° detector over the energy range from 1.0-i0 keV. Cyg
X-3 was in the field of view from I01 to 145 seconds.

An Fe-55 calibration source was placed in the field-of-view

from 85-100 s and from 286-302 s. Figure 2 shows the

spectral data for the Cyg X-3 observation with the 3 ° de-

tector. The background data subtracted are from a region
15 ° north of Cyg X-3. It was impossible to obtain back-

ground data nearer the source because of the large field-of-

view and source confusion near Cyg X-3. The background data
used are from the time interval 161-187 s. The slightly

negative values in Figure 2 below 0.4 keV are due to an

increase in the soft X-ray background at the higher galactic
latitude of the background region.

The spectrum that best fits our data (solid line in
Figure 2) in the energy range 1.5-8 keV is a blackbody

distribution with a temperature T = 2A2 x I_7°K and a
hydrogen column density NH = 2.3 x i0 zz cm- . X_ per degree

of freedom for this fit is 1.9. Other simple spectra (thermal
bremsstrahlung, power law) gave worse fits with X z per

degree of freedom exceeding 3.5. The data were not fit
below 1.5 keV because we believe that another source is con-

tributing at these energies. To demonstrate the source

confusion below 1.5 keV, Figure 3 shows the spectral data
from the 5 ° detector plotted together with the previously

determined blackbody spectrum. A large excess peaking at

i keV is readily apparent. To produce this difference

between the two detectors, another soft X-ray source must
be present near the edge of the field of view of the 3 °
detector. This source will be discussed elsewhere.

An iron emission line feature at about 6.5 keV has been

searched for in our data. We can plac_ a 3a upper limit
on such a feature of 0.006 photons cm -_ s "I.

DISCUSSION

There are currently two reports in the literature of

iron line emission in the spectrum of Cyg X-3 (Sanford,
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Mason and Ives 1975, Serlemitsos et al. 1975). Our obser-

vation and one observation by the second group of authors
above found no such line emission. From the compilation of
all these observations, there is as yet no apparent corre-
lation of line emission with spectral shape, 2-10 keV
intensity, or binary phase. Table i shows the range of
conditions observed in the source.

One can use the fact that a blackbody spectrum is
observed to deduce aminimum radius for the X-ray emitting
region. From their October 1975 data, Serlemitsos et al.
(1975) deduced a radius of 15 km and used this estimate to
argue that the compact object is smaller than a white dwarf,
which is the compact object in the model proposed by
Davidsen and Ostriker (1974). A similar estimate from

our observation yields a radius of only 5 km. However, an
approximately blackbody spectral form can be obtained with
a source which is optically thin to true absorption and
optically thick to electron scattering (Felten and Rees
1972), but the intensity in this case is far below that of
a true blackbody. If such a model is applicable to Cyg
X-3, the emission region may be substantially larger than
the 5-15 km obtained above. Thus it is probably too early
to rule out models involving white dwarfs based on these
spectral data. Of Course, the occurrence of a blackbody
spectral form and an emission line together (Sanford et al.
1975) may be difficult to understand in any single-
component X-ray source model.

Date

Table I.

Cy_ X-3 Spectral Results

T NH Flux
(2-10 keV_

(°K (cm'_ (ergs cm--
Spectrum x10-7) xl0 -_) s-i x 109)

Line

Str_ngt_
Phase _m -z s-L)

Oct 1973 a Blackbody 1.4 2.7 6.2

Sept 1974 b Blackbody 2.2 2.3 2.1

Oct 1974 a Bremsstrah- _>20 7-8 1.2

lung

May 1975 c Blackbody I.6 5.3 6.8

3.8

.81 not seen

.8O 50.006

•01 0.018+0.004

.3-.8 0.042_0.005

.8-.3 0.019_0.003

aserlemitsos et al. 1975.

bThis paper.

CSanford, Mason and Ires 1975.
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0.045-

CYG X-3

BLACK BODY

O.I
L L L _ L

1.0 I0.0

E keV

Figure 2. Spectral data (3 ° detector) from Cyg X-3 with
background subtracted. The solid line is the

best fit blackbody spectrum with T = 2.2 x 107 °K

and N H = 2.3 x 102z cm-Z.
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detector. The solid line is the same spectrum

as in Figure 2. The large excess peaking at I
keV is due to another (uncatalogued) source within
the field of view.
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Cyg X-3

Discussion

N. V. Vidal to R. M. Hjellming:

Do you have any idea what is the source of relativistic particles in

the system?

R. M. Hjellming:

A series of consecutive shock waves may accelerate particles
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THE TRANSIENT X-RAY SOURCE A0620-00

(NOVA MONOCEROTIS 1975)

Stephen P. Maran

Laboratory for Solar Physics and Astrophysics
NASA-Goddard Space Flight Center

Greenbelt, Maryland 20771

ABSTRACT

A0620-00 is the first of the so-called "X-ray

novae" to be identified with an optical object.
Emission in the ultraviolet, infrared and radio
wavelength regions has also been observed from

this source. From the observed properties of
the optical radiation, it has been suggested
that the source is a recurrent nova and indeed

the IAU Circulars now refer to it as Nova
Mnnne_rn_i_ 1975 but there s_ othe_ nnssible

interpretations. This paper includes both the
"Introductory" and "Summary" remarks that were

separately presented at the session on A0620-00

during the Symposium on X-Ray Binaries and
some additional material.

INTRODUCTION

During the eight years since the first transient X-ray

source (Centaurus X-2) was observed, there has been only

modest progress in determining the physical nature of these

objects. Now, however, thanks to the optical identification

of the recent transient source A0620-00, it should be feasible

to formulate and test detailed models for at least this one

object. In fact, there are also ultraviolet, infrared and

radio measurements of A0620-00 and so we have indeed almost

an embarrassment of riches and it will be probably at least

a year or two before it becomes possible to critically

evaluate the bulk of the observational material. Indeed,

present satellite instrumentation can probably continue
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to monitor th 9 declining X-ray emission of the source for

several years to come.

As many authors have noted recently, it has become

clear that there are at least two distinct types of transient

X-ray source. A0620-00 belongs to the type (called Class II

by Brecher and Morrison) whose outbursts are longer-lived,

unpulsed, characterized by softer spectra, and also perhaps

(according to Kaluzienski et al. 1975) intrinsically both

less common and more luminous.

In the past few months, as reports of several new

transient sources, including A0620-00, have appeared, it

has become increasingly clear that they represent not only

an important and numerous category of object, but also

that they very plausibly can be considered as candidate

binary systems. We therefore added this special session on

A0620-00 to the program of the Symposium on X-Ray Binaries.

Looking through the many IAU Circulars that report

results on A0620-00, one is struck by the fact that this

object has been successively described as A0601-00, as

A0621-00, as the transient source "in Orion," as A0620-00,

and (most recently) as Nova Monocerotis 1975. For the

record, we might note that the first designation simply.

resulted from an erroneous position, while the more recent

shift from "A0621-00" to "A0620-00" just reflects a

refinement in the position measurements. The source is

about one half of a degree east of the Orion border in

294
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Monoceros, so that its description as a transient object

"in Orion" is less excusable than that of the briefly

famous "Nova Cephei_' which we now remember as Nova CP

Lacertae, and which erupted only arc seconds outside the

Cepheus border. (On the other hand, one has to admit

that the nearby star "78 Orionis" is much further into

Monoceros than is A0620-00. Has ever a physicist, high-

energy or otherwise, ventured into astronomy and not run

afoul of the mysterious conventions and units?)

A slightly more interesting question is posed by the

designation of A0620-00 as "Nova Monocerotis 1975." This

action was taken by the IAU Central Bureau for Astronomical

Telegrams on the basis of optical properties of the source,

just as has been done in the past in the case of every "nova".

But, in retrospect, the X-ray astronomers who searched in

vain +h4_.._os_mm_._ .v._ -° signal from the bright o-+4r_1=

object Nova Cygni 1975 while at the same time A0620-00

(optically, 10,000 times fainter) was the brightest X-ray

source in the sky, might well question the propriety of

"Nova" Monocerotis. In the radio wavelengths as well, A0620-00

seems to be very different from the classical novae in that

its radio emission was already present when first searched

for only two days after the source attained maximum

luminosity.
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If we then admit that Nova _onocerotis 1975 is not

a classical nova, one might well ask whether among the

extensive literature on the classical novae and related

stars (very few of which, of course, have been studied

by non-optical techniques) there might be perhaps other

interlop@rs similar to A0620-00 that, thanks to the

lack of X-ray satellites in the past, went unrecognized?

A good summary of the optical light curve and spectral

development of A0620-00, when it becomes available, might

form the basis for a reconnaisance of the literature in

search of such an object. (Take a contrary position for

a moment, and assume that A0620-00 is indeed a recurrent

nova as proposed by Eachus, Wright and Liller: then

perhaps we now have a basic diagnostic, namely the

occurrence of prompt X-ray and radio emission, to distinguish

a recurrent nova from an ordinary one° In that case we

might disprove a dictum of my late Professor and an authority

on novae, D. Bo McLaughlin: "It is not possible to list

criteria whereby a recurrent object might be recognized

at its first recorded outburst.")

THE OBSERVATIONS

The X-ray emission of A0620-00 has been observed by

at least four automated satellites and from a manned space

station. Satellite measurements have also been made in

the ultraviolet. A great many radio and optical observations

and some infrared measurements have been obtained from the

296



ground. A preliminary and almost surely incomplete

chronology, given in Table 1, will give you the flavor

of this exciting recent history. If you will grant

the chairman the usual privilege of a few moments of

pontification and I-told-you-so's, I think a few points

are worth making. The tremendous job that has been done

on the investigation of this transient source has not

rested alone on the traditional fine international

cooperst!on and communications among all astronomers. It

has also been enabled by the availability in space this

summer of a satellite with excellent capabilities for

monitoring and surveying large areas of the sky (Ariel-5)

and of another satellite (SAS-3) with, among its many

virtues, the ability to point various instruments as

needed at a selected location on fairly short notice.

We have also benefited from the ANS satellite, which has

given us the first extensive ultraviolet photometry of

this and other stellar X-ray sources. The optical

identification of A0620-00 is among the first results of

a new facility (McGTaw-Hill Observatory) that fulfills the

long-felt need for a substantial telescope dedicated to

full-time support of the high-energy investigations

underway with spacecraft. Finally, surely among the most

important results Is the discovery of the prior eruption,

half a century ago, in the Harvard plate stacks. Are we doing

enough nowadays to ensure that a similar collection, representing

our own era, will be available to future astronomers (and

indeed for ourselves)?
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August

TABLE 1

Chronology of A0620-00 Investigations

(1975)

Source discovered by Ariel-5 Sky Survey

Experiment (2 - 18 keV).

6 Intensity reaches 2 - 18 key "precursor"

peak. For thermal bremsstrahlung fit,

kT _ 30. Already stronger than the Crab,

source brightens in ensuing days, spectrum
softens and in fact flux above I0 key

actually decreases. Low energy cutoff
becomes evident.

Discovery is telexed to IAU Central Bureau.

SAS-3 observations co_uenceo

13 Maximum intensity in 2 - 18 keV band° For

1 - I0 keV, kT = 1o7 keV°

14 SAS-3 measures position with modulation
collimators°

15 SAS-3 group provides accurate position to

ground-based observers°

Radio source is detected at NRAO (1400

MHz) and Arecibo (2380 MHz).

16 Optical source is detected at McGraw-Hill

Observatory°

Radio source detected at Jodrell Bank (962

MHz)° Intensity decreases by factor e in

about five days° 2695 MHz observations
commence at NRAO.

17 High dispersion spectrograms with KPNO

4-meter telescope show no stellar lines.

20 Radio source observed at Nancay (1408 MHz)

22 Radio source measured at Mullard Observatory
(5000 MHz)o

Optical fluctuations of 10% on 30 - 60

minute time scale are reported from South
Africa°
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TABLE 1, Continued: Ch___ronology of A0620-00 Observations

August 23

26

27

28

31

September

1

10

12

22

24

27

UBV photometry commenced at European
Southern Observatory.

Infrared emission (1.25 - 3.45 microns)

measured at Kitt Peak.

Prior eruption in 1917 reported after
search of Harvard plate collection.

SAS-3 low energy instrument detects strong
0.4 - 0.8 keV emission with spectrum
characterized by prominent cutoff due to
interstellar absorption, kT = 1.3 keV.

Four-day modulation of UBV light appears
in ESO light curves; total amplitude about
0.2 magnitude.

Photographed at Herstmonceux to derive
astrometric position.

Multichannel photometry with 200-inch Hale
reflector shows flat continuum.

Ariel-5 All Sky Monitor (3 - 6 keY)
observes source declining continuously

throughout o^__^__

Optical emission lines detected and measured

with Anglo-Australian 4-meter telescope.

Salyut-4 cosmonauts observe source in six
X-ray bands.

UBV linear polarization (apparently inter-

stellar), measured at Kitt Peak, is reported.

Amplitude of 4-day UBV modulation found at
ESO has decreased to about 0.1 magnitude.

Infrared photometry (2.2 microns) commences
at Tenerife 152-cm telescope.

ANS X-ray and ultraviolet observations begin.
kT = 1.0 keV at 1 - 8 keV. Light curves
obtained at five wavelengths from 1550 to

3300 angstroms.
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TABLE1, Continued: Chronology of A0620-00 Observations

October

10

20

23

0S0-8 X-ray observations commence.

Source about 15% brighter (3 - 6 keV) than
in late September; decline resumes. At
present rate, source should remain above
threshhold for Ariel-5 All Sky Monitor for
another year or more.

Discussion at Royal Astronomical Society
meeting; negative results of search for
ionized silicon and sulphur X-ray emission
lines are reported. Ariel-5 data also
yield report of less than 3 % linear
polarization at 6 keV.

High-speed photometry.at McDonald Observatory
shows no random or periodic variations on
time scales of 2 - 200 sec.

Symposium at NASA-Goddard Space Flight Center.

First papers on the source appear in Nature.
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In Table 2, I summarizethe highlights of the observations

of A0620-00that have been reported (in many cases at this

symposium) by many groups. Some results clearly require

confirmation. For numerical data, consult the related papers

in these Proceedings and the other references listed in the

bibliography.

One surely would like to have more optical spectra

than those reported thus far. They can be used to examine

the hypothesis that we are dealing with a nova or recurrent

nova and (as the star returns to minimum light) they may

possibly reveal the physical nature of the (non-eruptive)

companion. Do the emission lines recently detected with

the Anglo-Australian telescope show any indication of

orbital motion or of expansion of an ejected envelope?

These are among the immediate and vital questions that are

as yet unanswered.

A variety of interstellar absorptions have been observed

against the respective optical, ultraviolet, and X-ray

continua of A0620-00. These include the Na D lines, a

o
diffuse feature at 5780 A, the extinction feature near 2200

and the low-energy cut-off in the X-rays. Evidence for any

time changes in these quantities should be carefully examined

as it would indicate changes in the distribution of circum-

stellar material. (Like the conventional X-ray binaries, the

transient sources probably have accretion disks. In the case

of the transient sources, the disks may evolve on rather

short time scales, so that the investigation of changes in
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TABLE 2

Highlights of A0620-00 Observations

Outbursts in 1917 and 1975.

From interstellar diagnostics, 1 < D < 3 kpc.

From optical light curve and recurrent nova analogy,

D = II kpc.

For D _ 1 kpc, X-ray luminosity _ 1038 erg sec, near

Eddington limit for one solar mas_.

At maximum, X-ray and radio emission are observed,

contrary to the properties of classical novae.

Enormous X-ray amplitude of the outburst, >104 .

No periodic X-ray or optical pulsations on time scales

of fractions of a millisecond to two days.

Precursor peak occurred one week before X-ray maximum.

X-ray spectrum hard in early stage of outburst, softened

dramatically toward and after maximum intensity.

No X-ray lines detected.

Polarization less than a few per cent at 6 keY.

Visible light fades more slowly than X-rays after maximum.

Optical emission lines detected well after maximum.

Four day oscillation emerges in UBV light curves two weeks

after maximum.

Flat radio spectrum is probably nonthermal.

Optical, UV continua individually suggest T _ 30,000 K.

Visible light is red at minimum; blue during outburst.

Optical polarization is probably interstellar.

Amplitude of optical outburst is 8 magnitudes in B.
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the "interstellar" diagnostics may shed light on the

dynamics of these processes.) Further spectral work to

verify the conclusion of Snow et al., that the source is

closer than 3 kpc, is especially important, since this

result is in gross contradiction with the 11 kpc distance

of Eachus, Wright and Liller, and hence with the recurrent

nova model. The other interstellar absorption results in

general just tell us that A0620-00 is at least 1 kpc aw_y.

The detection of a 4-day modulation in v, _, and V,

while still subject to independent confirmation, looks

quite real in the data of Duerbeck and Walter (1975). It

is obviously important to search the data in the other

wavelength ranges for evidence of this periodicity, which

might well be that of the binary orbit.

The optical counterpart of A0620-00 is very red

at minimum light on the Palomar survey plates; Ward et al.

estimate B - R_3.6 and discuss various possibilities for

the companion star of the eruptive object, assuming that

it is the companion that was photographed at minimum.

If the companion is a red giant, this would place the source

at a distance of at least 15 kpc. The amplitude and hence

the distance estimated by Eachus, Wright and Liller on the

assumption that the object is a recurrent nova would each

be larger on the assumption that the object on the Palomar

plates is actually the companion. (See Cowley 1975.)

Multiband photometry or spectra at minimum light might

resolve this question.
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THE THEORIES

Conventional nova outbursts are thought to be

stimulated by the accretion on a white dwarf of matter

lost from its cool and larger companion star through

the inner Lagrangian point of the binary system (cf.

Starrfield, Sparks and Truran 1975). Models proposed

for A0620-00 include the suggestion that it is in fact

a recurrent nova (Eachus, Wright and Liller 1975). An

alternate and quite attractive possibility is that we

have here a nova-like system, but one in which the

compact star is a neutron star or a black hole (Elvis

et al. 1975). Ricketts, Pounds and Turner (1975) and

Doxsey et al. (1975) describe brief scenarios for the

evolution of the outburst in such a binary.

Doxsey et al. consider the case when the outburst

arises from the sudden onset of massive accretion, perhaps

at periastron. In this case, the 58-year recurrence time

is the orbital period. Assuming that the X-ray luminosity

is near the Eddington limit, they require a mass of four

suns for the compact object, which is therefore a black

hole, providing that the distance exceeds 1.5 kpc.

Arguing from the appearance of the star at minimum on

the same Palo_ar survey plates, Ward et al. conclude that

the nondegenerate companion may be a red dwarf, Cowley

proposes that it is a giant, and Endal et al. call it subgiant.
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In Cowley's nova-like model, the 4-day apparent

periodicity found in U,B,V is identified with the

orbital period. Endal, Devinney and Sofia (1975) argue

that the system is not nova-like, since many of the

observed properties are so different from classical novae,

and they propose an Algol-type system. In their model,

the compact star is a white dwarf.

Brecher and Morrison (1975) make the ingenious

suggestiou that the X-rays arise when a shock collides

with the local stellar wind or other pre-existing

Most of the theories advanced thus far are

qualitative and based on only a particular subset of

the data. Since most of the material discussed here

remains to be published, this is hardly unreasonable_

We do not yet have a compelling case to accept any of

the models, but surely the results summarized in Table

2 are trying to tell us something and perhaps a clearer

picture will emerge in a year's time.
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CONCLUDING REMARKS

At peak intensity, A0620-00 was much stronger than Sco

X-1 and indeed was the brightest known extrasolar X-ray source.

The researchers who have on occasion searched for ionospheric

influences of Sco X-1 would thus do well to look for the

signature of AO620-OO's outburst in August, 1975. Transient

sources of this magnitude may occur relatively frequently,

but have been overlooked in large part previously thanks to

the lack of appropriate all sky X-ray monitors. Now that we

know that fairly bright optical emission can accompany the

X-ray eruptions, it is to be hoped that observers with Schmidt

and other appropriate telescopes will respond more vigorously

and promptly to announcements of new satellite discoveries,

even when the initial position measurements are very crude.

Even should the optical counterpart escape immediate notice on

the plates when the positional uncertainty of the X-ray source

is quite large, later refinement of the X-ray position may

enable both a retrospective identification and the possibility

of constructing a light curve in the optical starting from as

soon as possible after the X-ray discovery.

It is a pleasure to thank the organizers of this symposium,

Drs. Y. Kondo and E. Boldt, for their courtesy in adding the

session on this source to the program at almost the final minute.

I am indebted for very interesting discussions to Drso L.Go

Jacchia, Wo Liller, B.Go Marsden and Ko Pounds, and I thank

Dr. S. Kleinmann for communicating the infrared data in advance

of publication.
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The following bibliography cites a fair number of

references that were consulted in the preparation of these

remarks but which are not directly cited in the text. As

one final confusing note, it should be mentioned that

recently the SAS-3 group has discovered another transient

source, MX0656-07, which has been called the "X-ray nova

in MonocerosY' (IAU Circular, No. 2843)o
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THE EARLY LIGHT CURVE OF A0620-00

L. J. Kaluzienski*, S. S. Holt, E. A. Boldt and P. J. Serlemitsos

NASA/Goddard Space Flight Center

Greenbelt, Maryland 20771

The Ariel-5 All-Sky Monitor measured the 3-6 keY x-_a_ intensity of 0620-00

for two days shortly after peak emission in August 1975, and continuously

throughout September 1975. The effective exposure each day for this source

(and every other source in the _80% of the celestial sphere covered by the

monitor) is _250 cm2sec.

Figure i illustrates the 512 elements (in spacecraft coordinates) into

which the monitor data is stored for readout each orbit. A complete

description of the experiment is given in Holt (1975). At the time of

source appearance, the spacecraft spin axis was in an extended (_i month)

hold at the north galactic pole, so that the galactic plane + i0 ° was

inaccessible to the experiment. Shortly after maximum, the satellite

reoriented to place the spin axis in the direction of A0620-00, so that

approximately two days of data were obtained before the source moved into

the "polar dead spot".,

The light curve obtained through October 1 _hen the spin axis was again

pointed to A0620-00) is shown in Figure 2. Shown for purposes of crude

comparison are the data reported from other Ariel-5 experiments in IAU

telegrams (where we have normalized the quoted intensities in IPHURU counts

to the Crab Nebula). The intensity difference at maximum is obviously a

manifestation of the very soft spectrum of the source. Clearly, A0620-00

was approximately four times as bright as Sco X-i at maximum in the band

3-6 _eVo The decay is quite smooth= but cannot be fit with a single e-foldlng

time. The interval between the early All-Sky Monitor points and the onset

of continuous coverage has an inferred e-folding time of _22 days, but it is

continually increasing throughout September. When next observed on

5 October (not shown in the figure), the intensity is actually _15% higher

than at the end of September_ but it has since resumed its decline.

A0620-00 is apparently similar in its x-ray character to the very strong,

long-lastlng transient x-ray sources which presently number six in the data

catalog. In contrast, only three can be sensibly reconciled with the lower-

intensity, shorter-duratlon hard-spectrum transients which have been found

to "pulse" on a time scale of minutes. Table I lists these "unqualified"

transients.

*Working at GSFC under U. of Md. contract 21-002-316.
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TABLE I

Spectrum:

Timescale:

Intensity at max:

Pre-Ariel-5

Ariel-5

> Crab

ton> I month
> Crab

Cen X-2

Cen X-4

1543-47

1524-61

1742-28

0620-00

< Crab

ton < i month

< Crab

1735-28

1118-61

0535+26

It is important to note that the All-Sky Monitor has a sensitivity of

_0.I Crab for sources which have a duration of _ i week for /b/ > I0 °,

and somewhat worse (_0.3 Crab on the average, depending on source con-

fusion) for comparable on-times in the galactic plane. All of the Arlel-5

transients listed in Table I were close to the plane, and the obvious lack

of long-duration sources with intensities below that of the Crab is a bit

surprising. If we assume that such sources may occur anywhere in the

galactic plane with roughly equal probability and with roughly comparable

absolute luminosity, the assumption of an effective experimental threshold

at the intensity of the Crab Nebula yields, after Silk (1973):

t L

N (>S, t) 4_S--_T

L ergs : 3.6xi038 N(>S.t) S

yr t yr Scrab

where N(>S, t) is the number observed above an intensity S in a time t,

assuming a mean time _ between source appearances at peak luminosity L

in the galaxy (of radius R). As there were three sources of the long-

duration variety (left side of Table I) during the first year of Ariel-5

operation, it is safe to say that _ > .I (on the average), and that

L > 103Berg s -I. The lack of lower intensity sources above the All-Sky

Monitor threshold similarly is indicative of a peak luminosity in transients

similar to 0620-00 which is at least this high. If these sources are fueled

by the conversion of gravitational potential energy from accreted mass, such

high peak luminosities may be indicative of an Eddington-limited mass flow.

In contrast, the harder-spectral, shorter-duration sources on the right side

of Table I are not as luminous at peak. AII18-61 was out of the field of

view of the All-Sky Monitor for its entire lifetime, but would have been

below the experimental sensitivity of the monitor anyway. The short lifetime

of these sources allows _ to be as low as _I0-3 without conflicting with any

measurements of which we are aware (the most restrictive being the upper

limit for a galactic "ridge"). There certainly can be _i00 sources of this

kind in the galaxy each year, with peak luminosity < 1037 erg s "I. The

characteristics which this type of transient have in common with Vela X-I

(3U0900-40) are important in suggesting that the latter represents a

"stable" counterpart for these objects.
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It is not at all clear that a similar counterpart exists for the long-

duration transients. Perhaps the best candidate is Aql X-I (3U1908+00),

which "flared" in 1975. As shown in Figure 3, the general light curve

characteristics are quite similar to those of A1524-61 (c.f. Kaluzienskl,

et al. 1975), but on a shorter timescale. Copernicus measurements placed

Aql X-I at a level _ two orders of magnitude below its maximum intensity

in Figure 3 for the two years prior to outburst (the Crab Nebula has an

intensity of 1.4 in the units of Figure 3), so that Aql X-I would have

easily satisfied the conditions for being labelled a "transient" had it

not been catalogued previously.

The optical identification of A0620-00 has enabled a more detailed study

of this transient than any other, but the x-ray phenomenology has not yet

been exhausted. As the present intensity of A0620-00 is two orders of

magnitude above the All-SkyMonitor sensitivity, we expect that its light

curve will be continuously recorded for at least another year.
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OBSERVATIONS OF A0620-00 BY SAS-3*

H. Bradt and T. Matilsky

Department of Physics and Center for Space Research

M_ssachusetts Institute of Technology

ABSTRACT

The transient X-ray source A0620-00 has been observed

by the SAS-3 group with the SAS-3 X-ray observatory

since Aug. 3. At maximum X-ray luminosity, _ Aug. 13,

and thereafter, we have placed limits of < 2% on peri-

odic variations from 0.2 ms - 2000 sec. On Aug. 15,

a precise position was obtained with the rotating

modulation collimator. This led directly to r_dio

and optical identification by groups at the NRAO,

Areeiho, and McGraw Hill Observatories. On Aug.

27, the low energy (0.15-0.9 keV) system was pointed

at the source, and we derived a s_ectrum: kT _ 1.3

kaV and F - !.0Y!0 -6 ...... -2 o-i (n _-in _v_ w_h

N H = (3.5±0.3)x1021/cm2_ - (;ee table-l) -Hardness

ratios are presented, as well as detailed light curves,

from Aug. 8 to Oct. 14. Of particular interest is a

dramatic initial softening of the source on Aug. 8

(previously reported by the Ariel-5 group), a gradual

hardening from Aug. 9 - Aug. 14, and a softening from

Aug. 20 - Sept. 17. (See figures 2,3,4)

This work was supported in part by the National

Aeronautics and Space Administration under contract

NAS 5-11450.
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JD

633

8/8

637-8

8/12-13

64O

8/15

640

TABLE I

HISTORY AND PRINCIPAL RESULTS

FIRST SAS-3 SIGHTINGS - SPINNING MODF

VERY SOFT SPECTRUM,

(BUFF, Joss, LAUFER)

POINTED OBSERVATIONS 1,5 - 50 KEV

<0,4% PULSED 0,8-430 S

<2% PULSED 0.2 MS - 0,3 S

KT _ 1,7 KEV

F = 1.7 X 10-6 ERGS CM-2 S-1 (1-10 KEV)

(MATILSKY, MAYER, PRIMINI, LI)

POSITION MEASUREMENT - RMC

6H 20M 9_5 (1950)

-0° 19' 1_5

ERROR RADIUS 60"

(DoxsEY, JERNIGAN)

RADIO IDENTIFICATION (NRAO/ARECIBO)

641

8/16
OPTICAL IDENTIFICATION (MCGRAW HILL)
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TABLE I (Continued)

652
8/27

653-98
8/28 -

1011}

699

10/lq

POINTED 0RSERVATIONS 0.15 - 50 KEy

INTENSE FLUX, 0.4 - 0.9 KEV
KT = 1.3 KEV
F = 1.0 x 10-6 ERGSCM-2 S-1

(0.3 - 10KEV)

NH = (3,5 +_.0,3) x 1021 H CM-2
N,._' 3.5 x 1021 (21 CM)

(RE;RN, RICHARDSON, DOXSEY)

(X-RAY)

SPINNING OBSERVATIONS

LIGHT CURVES

HARDNESS RATIOS .............. _ ...... =

(_ATILSKY, _UFF, ZUBROD)

POINTE0 OBSERVATIONS1.5 - 50 KEV
"'2 X 10 / COUNTS/ORBIT

flU rUL_IR_ %_1_1

UmL MO -- _UVU O

KT _ 1.1 KEV
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OPTICAL IDENTIFICATION QF A0620-00

R. Wolfson and F. Boley

Department of Physics and Astronomy

Dartmouth College
Hanover, New Hampshire 03755

ABSTRACT

Identification of the optical counterpart to the transient

x-ray source A0620-00 was made on 16 August, 1975, using

image tube photography at the McGraw-Hill Observatory on

Kitt Peak, Arizona. Spectra taken subsequent to the

identification showed no stellar absorption or emission

featur_. Photometric =_ _ ......... =.............

This is about 8 magnitudes brighter than the object appears

on the Palomar Sky Survey.

INTRODUCTION

The optical counterpart to the transient x-ray source

A0620-00 (Elvis et al. 1975) was identified and studied

spectroscopically and photometrically about two weeks after

the first x-ray detection. Observations were made with

the 1.3 meter telescope at the McGraw-Hill Observatory on

Kitt Peak. This observatory was opened in the spring of

1975 with the primary purpose of studying optical counter-

parts to x-ray sources. Optical identification of A0620-00

was made possible through close coordination between the

observatory and the MIT SAS-3 satellite group.
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OBSERVATIONS

The x-ray source was first detected on Aug. 3 by the

Ariel-5 satellite (Elvis et al. 1975), but it was not until

Aug. 15 that a precise position (_2') was determined by

SAS-3 (Matilsky 1975). On Aug. 16 we obtained eight two

minute image tube exposures of a region centered on the

SAS-3 position. Figure 1 shows a portion of one of these

plates, along with the corresponding portion of the red

Palomar Sky Survey plate. The object marked on the

McGraw-Hill plate lies about one arc minute from the

Aug. 15 SAS-3 position, and about 25" from a subsequent

refined x-ray position (Doxsey et al. 1975). The object

is within 2" of a faint star on the Palomar plate, whose

position (epoch 1950) is:

= 6 h 20 m ii.2 s

= -0 ° 19' i0"

(Boley and Wolfson 1975). We estimate the 1975 object to

be at least six magnitudes brighter than the corresponding

Palomar star.

Subsequent to the optical identification, we obtained

three image tube spectra at a dispersion of 120 A/mm. These

spectra show no absorption or emission features. High

dispersion spectra obtained by Gull and York (1975) are

similarly lacking in stellar lines. Observations made

about three weeks later (Peterson, Jauncey, and Wright 1975)

showed N III _X4634-4640 and He II A4686 appearing in
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emission.

Four nights of photometric data were obtained beginning

on Aug. 22. Photometric observations were severely hampered

by the proximity of the sun, which allowed as little as half

an hour of observing time at the start of the optical work.

Figure 2 shows the reduced V band photometric data. The

data also yield a B-V color index of .2 ± .i. High and

rapidly changing sky counts, as well as cloud contamination,

resulted in substantial uncertainties in the magnitude and

color index. We searched the data for variations on time-

scales from .i second to 2 seconds, but found none statistically

significant.

Our visual magnitude estimate of 11.2 is consistent

with that reported by French (1975) on Aug. 26, and differs

by more than the uncertainty from the value 11.4 reported

on Sept. 14-15 (Bortle 1975). A decline in the optical

light curve is thus evident.

DISCUSSION

Photometric behavior of the object resembles that of

a nova. Both the brightness increase and subsequent decline

are consistent with observations of recurrent novae (Payne-

Gaposchkin 1964; Liller 1975). If optical maximum is

assumed to have occured in August, however, the spectroscopic

behavior is in contrast to that of most novae, which show

absorption and often emission lines near maximum light

(Payne-Gaposchkin 1964). It is intriguing to note that
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the ratio of optical to x-ray emission for A0620-00 is

the same as for Sco X-l, neglecting possible differences

in interstellar absorption (Boley et al. 1975).

We are grateful to the MIT SAS-3 group for their

cooperation throughout the observations, and to W.A. Hiltner

for providing much valuable advice. R.W. acknowledges

support from the Danforth Foundation.
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A0620-00 AS A RECURRENT NOVA

WILLIAM LILLER

Center for Astrophysics

Harvard College Observatory and

Smithsonian Astrophysical Observatory

Cambridge, MA

ABSTRACT

Evidence for and against the star associated with

A0620-00 beiny d **ova i5 p_esent_d, m_ ..... _""_" i_ _=_

this star closely resembles other recurrent novae with the only

unusual characteristic being the apparent high temperature at

maximum brightness.
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Following the discovery by Boley and Wolfson (1975)

of an optical source which was coincident in position with the

X-ray transient source A0620-00 and which had risen in brightness

from B ~ 20 to B = 11.5, Lola J. Eachus, working with a finding

chart kindly provided by S. Rappaport, searched through the

archival sky photographs in the collection at the Harvard

College Observatory and discovered (Eachus 1975) that in late

October or early November, 1917, the star underwent a similar

outburst. The 1917 light curve, which has been published

elsewhere (Eachus, Wright and Liller 1976, hereinafter referred

to as EWL), shows a rapid rise (>0.14 mag/day) to a maximum

brightness of B = 12.0 followed by a decline, d = 0.011 mag/day.

The current outburst appears to exhibit a similar rate of fading.

I should like to review the characteristics of these

outbursts and cr_tically compare them to those of recurrent

novae in order to evaluate the evidence for and against A0620-00

being a typical member of that sub-group of cataclysmic stars.

For ease of comparison, I list in Table 1 the properties of the

6 recognized recurrent novae, with the Boley-Wolfson star added

at the bottom with the data claimed by EWL.

It should be noted in Table 1 that it has long been

recognized (see, e.g., Payne-Gaposchkin 1963) that the quantities

in the second and third columns are related and probably like-

wise the fourth and fifth columns. In the case of rate of

fading, d, and Mma x, a least squares straight line fit to the
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data of Table 1 gives

M = -8.42 - 1.297 log d,
max

The average deviation of the values from this fit is only

0.27 mag.

A similar relationship holds for ordinary (non-recurrent)

novae. Certainly the most unbiased survey was that made by Arp

(1956) who patroled our sister galaxy, M 31, for a year and

discovered 30 novae. His results show that approximately

Mma x = -8.6 - 1.43 log d

Because all these novae were at sensibly the same distance,

the coefficient of log d is well-determined. The constant

depends, of course, on a knowledge of the distance to M 31.

Concluding that A0620-00 is a typical re-current nova,

EWL derived that M = -5.9 with an uncertainty of a few tenths
max

of a magnitude. However, it should be pointed out that A0620-00

has a slower rate of decline than the other recurrent novae and

is slightly "slower" than the slowest nova observed by Arp

(viz. 0.017 mag/day). There do exist a number Of recognized

galactic novae which are slower: for example, AR Cir, V999 Sgr,

DO Aql and Nova Centauri 1947, recently described by Henize

and Liller (1975).

According to Kukarkin and Parenago (1934), the recurrent

novae and the U Geminorum stars, such as SS Cygni, fit a single
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relation between the amplitude in magnitudes, A, and the interval

between maxima in days, P. Payne-GapQschkin (1964), using

photographic magnitudes corrected for the presence of companion

stars, gives for this relation

A = 2.00 + 1.78 log P

For the 7 recurrent novae in Table i, this formula predicts a

relatively small range in A, going from 8.7 to 9.9, and for

A0620-00, Apred = 9.7. A comparison of the pre-outburst images

of A0620-00 on the Palomar Sky Survey prints shows that the

system was conspicuously red with the (B-R) color ~2.5, suggesting

that we were seeing the light primarily from a red companion

and not the blue dwarf usually associated with the nova phenomenon

Therefore, it is not surprising that thepredicted amplitude is

1.2 mag larger than observed.

Because of the preponderance of X-rays coming from

A0620-00, one might now conclude that the system is composed

of a more or less normal red main sequence star with a highly

degenerate and hence invisible companion. However, as EWL

point out, if A0620-00 is a normal recurrent nova, its distance

must be ~i0 kpc and its X-ray flux exceeds 1040 ergs/sec, too

large to be explained by a normal accretion mechanism.
o

The one optical characteristic of A0620-00 which puts

it into the category of "unusual" is the purely continuous

spectrum exhibited by the star shortly after maximum (Gull 1975).

According to McLaughlin (1960), the spectrum of a nova at
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maximum light typically resembles that of an A or F supergiant,

although just before peak brightness, it usually is of earlier

spectral type. Nine days before maximum the slow nova DQ Herculis

1934 was classified as B5, changing to F0 at maximum and then

to F5 shortly afterwards. Allen (1973) gives Tef f = 15,500 °

for spectral type B5, and for 05, Tef f = 40,000 ° , which is

probably near the minimum expected temperature for a continuous

spectrum object.

According to Brecher (1975), the maximum distance which

A0620-00 could have and still be radiating X-rays by accretion

is ~3 kpc and if the interstellar absorption amounts to 2.0 mag

(EWL), then the absolute B magnitude at maximum brightness must

have been fainter than or equal to -3.0. Thus, A0620-00 would

have been sub-luminous by at least 3 magnitudes, if classified

as a typical recurrent nova.

In conclusion, we find that save for a much higher

temperature at peak brightness than is usually found, A0620-00

is quite typical of that sub-class of cataclysmic variables

known as recurrent novae. If its lumimosity at maximum brightness

is also typical, then the distance of ii.0 ± 2.5 kpc derived by

EWL must be correct, and the X-ray radiation must be produced

by a mechanism other than simple accretion onto a degenerate

star. If simple accretion is responsible for the observed

X-ray flux, then the distance is _ 3 kpc and the absolute

magnitude is at least 3 magnitudes fainter than expected on the

basis of A0620-00 being a typical recurrent nova. Hopefully

this conflict of characteristics can soon be resolved.
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TABLE 1

PROPERTIES OF RECURRENT NOVAE

Name
Rate of

Fading Mmax
A
m

Period

U Sco 0.67 mag/day -7.6

T Cor B 0.52 -8.1

RS v_,,_-_ 0. _"_v -v._o

.... _^ 0.I0 -7.1

VI017 Sgr 0.034 -6.4

T Pyx 0.032 -6.4

8.7

8.5

7.3

8.6

7.0

6.8

37 yr

79

35

32

17

18

A0620-00 0.011 -5.9 8.5 58
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A PERIODIC BRIGHTNESS VARIATION OF THE OPTICAL

COUNTERPART OF A0620-OO

H.W.Duerbeck

Universit_ts-Sternwarte Bonn, F.R.G., and

European Southern Observatory, La Silla, Chile

K.Walter

Astronomisches Institut der Universit_t T_bingen, F.R.G.,

and European Southern Observatory, La Silla, Chile

(presented by H.Mauder)

T_-^_I,. =_ _1_, and Wo]_son's d_scoverv of an 11 maqnitude

star near the position of the transient X-ray source AO620-00, we

started observations with the 50 cm telescope equipped wltn a

single channel UBV photometer of the European Southern Observatory

in Chile.

During an observing run of 33 nights, 27 nights were suitable for

photometric observations. The 27 data points in figure 1 represent

means of 2 to 6 individual measurements of the magnitude differen-

ces between the variable and the comparison star BD -0o1275. The

brightness of this star was found to be V = IO_OO, B-V = + O_13,

U-B = + O_O3.

The most striking feature of the light curves is the fairly rapid

decline of approximately O_5 in I month, superimposed by semi-peri-

odic brightness variations with a mean period of 4.0 ± 0.3 days,

and amplitudes decreasing from O_I0 to OTO5. This phenomenon

closely resembles the behavior of some novae during the transition

stage. ( A 4/3 day period cannot be excluded, because the dally

observations were obtained at about the same hour of the night ).

Equally remarkable is the strong U brightness, apparent from U-B

= - 0_74 as compared to B-V = + 0_25. The colour indices remained

fairly constant with an increase of 0nly O_01 / 10 days.
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A spectrogram of the star was obtained on September 24, 1975 with

the 1 m telescope and a Cassegrain spectrograph of ESO. The dis-

persion is 86 _ mm -1 . The most noticeable features are two very

broad weak emissions identified with He II 4686 and C III 4650,

N III 4640. These and the appearance of the continuum suggest a

very hot star.
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Figure 1. Observed magnitude differences (from above: AU, 6B, 6V)

between the optical counterpart of AO620-OO and BD-O°1275
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Spectroscopic Observations of the Candidate Star Coincident

with A0620-00.

Theodore P. Snow, Jr.

and

Donald G. York

Princeton University Observatory

Theodore R. Gull

Lockheed Electronics Co., Inc.

Lyndon B. Johnson Space Center

Several spectra of the optical object identified with the X-ray flare source

A0620-00 were obtained at 5 _ min-1 with the cassegrain echelle spectrograph on

the 4 m Mayall telescope at Kitt Peak National Observatory. The energy distri-

bution of the source between 4250 and 7400 _ was derived by comparison with

spectra of I Ori obtained with the same instrumentation, and was _ereddened for

E(B-V) = 0_9, derived on the basis of the strength of the diffuse interstellar

band at 5780 _. The flux distribution resembles that of an O-star, with a possible

ultraviolet excess. The luminosity of the object between 4250 and 7400 _ is roughly

-1
5 x l0 B5 erg s , if its distance is 2 kpc which is the value roughly estimated from

the velocities and strengths of the interstellar Na I D lines. No stellar lines

are seen in the spectra, and the upper limits on the Balmer and He II lines are

quite inconsistent with the strengths expected for 0-stars. The data are generally

consistent with an interpretation that the object is a slow nova, although its

absolute magnitude is probably fainter than is usually found for objects in this

class, and the apparent high temperature and lack of absorption spectrum are some-

what unusual as well.
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MEASUREMENTS OF A0620-00 WITH ANS

A.C. Brinkman, J. Heise, A.J.F. den Boggende,

R. Mewe, E. Gronenschild, H. Schrijver

Space Research Laboratory

Utrecht, Holland

ABSTRACT

The Astronomical Netherlands Satellite (ANS) observed

A0620-00 from September 27 until October 3. About

fifty measurements were taken in spectral and high

time resolution mode. A preliminary light curve has

been made and the spectral parameters have been

determined.

The medium energy (I-8 keV) X-ray detector (Brinkman et al.,

from September 27 until October 3, 1975. Only real-time data

has been available to us so far. Most measurements were taken

in the spectral mode (7 energy channels between ] and 8 keV),

some in the high time resolution mode (time resolution of .125

seconds); no data from the pulsar mode (I milli-second reso-

lution) is available yet.

INTENSITY AND SPECTRAL MEASUREMENTS

The intensity curve as a function of time is given in figure 1.

The units along the vertical axis are ANS-counts per second.

The statistical one sigma error bars are far smaller than the

size of the dots. The uncertainties are dominated by systematic

effects. Each data point represents a measurement of typically

five minutes. A countrate of )000 ANS-counts per second is about

1.5 times the intensity of SCO X-]. (SCO X-| was measured with

this detector on August 30, )975, the countrate observed was

645 c/s).

Although these measurements were taken when the intensity on a

long term time-scale was decaying, see review by Dr. Willmore,

it is interesting to note that on October ] the intensity in-

creased. The daily averages are given in table I. On a time-scale

of hours, the intensity varies as much as 20%. Power density

spectra have been made to search for periodicities. Five

stretches of data about 550 seconds each were used. No indi-

cation of periods between .25 and I00 seconds were found. The

data has been fitted to photon number spectra of exponential,

thermal bremsstrahlung (exponential with energy dependant

gaunt factor), power law and black-body. The simple exponential
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givesthe best fit to the data, the reduced X 2 is 2 to 4.

Thermal bremsstrahlung is nearly equally acceptable. The para-

meters are

exponential kT - I.O ! .05 N H - (5 ! I) x 102|

bremsstrahlung kT = 1.2 ! .05 N H = (5 ! I) x 1021

power a - 4.2 N H - (I + .5) x 1022

The fit to the power law is quite bad, reduced X 2 - I0, the

parameter values have been given only for purpose of comparison

with other observations. The fit to a black-body spectrum 8ave

no acceptable solution. No spectral changes were seen over the

five day observing period.
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A STUDY OF A0620-00 IN THE ULTRAVIOLET

Chi-Chao Wu, J. W. G. Aalders, R. J. van Duinen, D. Kester and P. R. Wesselius

Kapteyn Astronomical Institute, Dept. of Space Research

University of Groningen

ABSTRACT

A0620-00 was observed 7 times with the ultraviolet instrument on board the ANS

in the period 1975 September 28.91-30.52 UT. Variations of semi-amplitude 0.2

mag are present in all five wavelength bands. These variations seem to be

correlated at different wavelengths, and the amplitude at 3300, 2500 and 2200

angstroms seems to be slightly larger than that at 1800 and 1550 angstroms.

The observed spectrum is de-reddened until a smooth energy distribution is

obtained between 1800 and 2500 angstroms, the amount of reddening correction

reauired is E(B-V) = 0.39±0.02 (for more detail concerning the ANS instrument

and the procedure for estimating the amount of interstellar reddening, see the

discussion of Cygnus X-I by Wu et al. in this proceeding). This de-reddened

spectrum matches perfectly with a blackbody curve of 28000 degree Kelvin

temperature. Furthermore, this energy distribution of A0620-00 agrees very

well with those of three dwarf novae (U Geminorum, VWHydri and SU Ursae MaJoris)

at minimum. Probably, A0620-00 is a thermal source with the flux between 1550

and 3300 angstroms comes primarily from an optically thick accretion disk.
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INFRARED MEASURE}_NTS OF NOVA MONOCEROTIS 1975 (A0620-00)

S. G. Kleinmann*

Massachusetts Institute of Technology

Cambridge, Mass.

R. R. Joyce and R. W. Capps

Kitt Peak National Observatory

Tucson, Arizona

ABSTRACT

An infrared source at the location of the transient

X-ray source A0620-00 was detected and measured on

2_.5 _n_ 2Q.5 August 1_7q w_th _h_ _N-_nrh _flp_fnr

at Fdtt Peak National Observatory. A preliminary

summ_rv of the results i_ Dr_P_ h_r__

We observed infrared ez_ssion from A0620-00 in the J, H, K, and L bands,

which correspond respectively to wavelengths of 1.25, 1.65, 2.2 and 3.45

microns. In addition, an upper limit was set at 4.6 microns. The results

are presented in Table I.

TABLE i

Date (U.T.) Wavelength Magnltude Average

_v._ _

29.5 1.25Z 10.75

26.5 1.65Z 10.49

29.5 1.65H 10.53 10.53±0.06

29.5 1.65H 10.56

26.5 2.2 _ 10.18
10.24±0.07

29.5 2.2 _ 10.30

26.5 3.45_ 9.79 9.90±.28

29.5 3.45_ i0.00 -.19

26.5 4.6 p >6.70 (30 upper limit)

29.5 4.6 _ >6.49 (3_ upper limit)

The tabulated uncertainties in magnitude are one-sigma statistical values.

We have averaged the measurements taken on the two dates as the decay of

the infrared light curve is not very strong.

* Visiting Astronomer, Kitt Peak National Observatory.
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It should be noted that the total uncertainty (which includes up to

fifteen percent uncertainty in absolute calibration) in any measurement

may be as large as four times the tabulated standard deviation.

In Figure i, the curve drawn through these infrared measurements assumes

that

(F_) intrinsic _ _)2

and

A v = 4.2 magnitudes.

The latter quantity is the maximum visual extinction that is consistent

with the assumed character of the intrinsic F and the one-standard

deviation error in the J and K data. A better estimate of the extinction

can be obtained by combining the infrared data with optical data.

NOTE: The authors of the above paper were unable to attend the symposium.

The paper is based on rough notes that they kindly sent to the session

chairman who prepared this manuscript for the proceedings and accepts

responsibility for any errors that may have inadvertently been introduced.

Some of the tabulated quantities have been rounded off during this prepar-
ation.
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COLLIDING SHELLS MODEL

K. Brecher and P. Morrison

Department of Physics and Center for Space Research

Massachusetts Institute of Technology, Cambridge, Mass. 02139

Abstract

We suggest that there are two distinct classes of transient

x-ray sources: (I) pulsating x-ray sources showing hard x-ray spectra

such as Aii18-61 and A0535+26, probably powered by sporadic infall

of matter onto rapidly-rotating magnetized collapsed objects sim-

ilar to those underlying the non-transient sources Her X-I and

Cen X-3, and _(II) unpulsed soft-spectrum sources, such as A0620-00

_v_'...... .._,.___....... _ _a_), _=_ x-_. c_ X-_ and the LuPus transient

.......... _._ _=_4=+_ _haB]v _r_s from thermal bremsstrahlung

by gas previously e_ected from the system, resembling rather the

continuously emitting source Sco X-I. We suggest that Class II

transient x-ray sources are the result of the shock-heating of pre-

existing optically thin circumstellar gas which surrounds mass ex-

changing binary systems. In this picture, only rapid mass exchange

binaries (dM/dt _i0 -6 M yr -I) should produce Class II transient

x-ray sources at currently detectable levels. Recurrent novae,

such as WZ Sge, or wind-driven rather than Roche-overflow binary

systems containing white dwarfs, are likely candidate sources.

Such a model for Class II sources accounts in a natural way for

the great difference in the x-ray to optical luminosity ratio of

the 1975 Cygnus and Monoceros novae; the relative radio, optical

and x-ray fluxes, and the absence of conspicuous absorption fea-

tures in the optical spectrum of the Monoceros nova; the time course

of the x-ray source intensity; the total radiated flux; and the

yearly rate of such events. Other properties of both Class I and

Class II transient x-ray sources are considered.
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THE NATURE OF THE X-RAY NOVA A0620-00

A. S. Endal* and E. J° Devinney f_

Laboratory for Optical Astronomy
NASA/Goddard Space Flight Center

Greenbelt, Maryland 20771
and

S. Sofia _

NASA Headquarters
Washington, D. C.

ABSTRACT

We present a model for the X-ray nova
A0620-00. Identification with a nova
can be ruled out on two counts. A

binary consisting of a late-type sub-

giant near the Roche lobe, irradiated
by an accreting compact companion is

shown, however, _o De _n ugr_m_._
with all known observations, including
new data vresented at this Symposium.
Photometry of the optical object shoula

be pursued since variability on an
approximately eight hour period is

expected.

THE OBSERVATIONS AND SOME IMPLICATIONS

_u_ _i_i_,t X-ray =_,,_o an_O-O0 was discovered on

3 August 1975 by the Ariel 5 detectors. Subsequently,

transient optical and radio radiation was detected at the

X-ray position. Even before the Symposium, the observations
seemed adequate to determine a viable model (Endal, Devlnney

and Sofia 1975). New data presented at the Symposium supports

the proposed model and makes possible further elaboration.
We first find it useful to give a summary of the relevant
observational facts.

X-ray

Abrupt ri_e to 20,000 UHURU counts and decay with e-folding
time _ 27 _. Initially hard, then softening spectrum.

_ NAS-NRC Postdoctoral Research Associate

NAS-NRC Senior Research Associate

On leave from the Department of Astronomy, University of

South Florida
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Optical

Abrupt rise to _ II_2, decay with e-folding time _ 69 d.

Recurrent: in 1917, m _ 13 for 75 to 150 days.

No intrinsic polarization.
Spectrum featureless but for interstellar lines.

Pre-outburst object red and m B _ 18.

Radio

Rapidly decaying early radio source with flat spectrum.

In the data presented one can find photometric behavior

resembling that of the classical recurrent nova. The
optical amplitude and time interval between outbursts does

fit the Kukarkin-Parenago relation. The typical recurrent
nova has My _ -7_5 at maximum and this would then imply a

distance of 5.7 kpc (with adsorption at 1 mag/kpc). The

pre-outburst absolute magnitude would then be near zero.

Liller has fit the 1917 outburst to the absolute magnitude-
decay rate data for novae (McLaugh]in 1960). (However, the

conversion from mag/day decay rate quoted by Liller to

time for a three magnitude decay does not seem correct.
t 3 should have been 300 d leading again to a distance

of 4-5 kpc, rather than 11 kpc.) The X-ray luminosity

at these distances would have the corresponding large value

of Lx _ 1.5 x 1039 ergs/second.

We believe, however, that the nature of the optical spectrum

rules out identifying A0620-00 as a classical recurrent nova.

According to McLaughlin (1960) dean of nova experts, "All
novae near maximum have strong, shortward displaced absorption

spectra---". (Of course, in the quiescent state novae do
show a continuous, and more or less featureless spectrum).

Later on, broad emission appears as well, leading to the
classical signature of an expanding shell. Such a shell,

thick enough to produce the observed broad features ought

to be quite absorptive for soft X-rays (as was well
demonstrated by Nova Cygni). Copious emission of X-rays is
further incompatible with the current theoretical picture

of the nova mechanism (Starrfield, et al. 1974). Spectra

taken by Oke and Greenstein (1975) and by Peterson, et al.

(1975) are not nova-like in character. An image-tube spectro-
gram taken as recently as UT0700 Nov. 12, by one of us (EJD)
shows no evidence of nova-like features. Line identifications

for the few observed features are given for the 4-meter

Anglo-Australian spectra of Peterson, et al. That the lines
are not mentioned as being highly displaced from their rest

positions is noteworthy. We conclude that the optical

radiation does not arise in an expanding shell.
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THE PROPOSED MODEL

We are led to consideration of accretion as the mechanism

for X-ray production. The Eddington limit will then regulate
the flux of X-rays. For reasons noted below, we consider

the mass of the compact member to be Mx _ 1.4M_. The
corresponding Eddington limited flux is L _ _38 ergs/second,

and with the observed flux giving Lx ffi4._ x 1037R2 (R in kpc),

we must have R _ 1.5 kpc. This limit is confirmed, since

the A0620-00 UV flux observed by ANS (Netherlands Astronomical

Satellite) appears properly dereddened at _ 1 kpc (Wu 1975).
At this distance the objects' flux distribution has neither

a bump nor a dip in the spectral reKion of anomalous inter-
stellar absorption, located at 2200_. At a distance of

1.5 kpc, the pre-outburst apparent magnitude m B _ 18 on the

Paloma_ Sky Survey Plates immediately requires it to have
M B _ 5.6, for 1 mag/kpc absorption. The PSS 0 and E plates
further indicate an intrinsic color not earlier than that

corresponding to about K3. Thus, the companion is a late
tvve star of sub-giant or lower luminosity. The ability to
rule out a glan_ companion, xn pa_x_u_, ,_o _.,_ ........ b

consequences, for Warner (1975) considers it very likely
that recurrent novae all have giant companions.

The low mass inferred for the companion red star suggests

to us that the compact star is a white dwarf, since
formation of a neutron star would have disrupted the system

by the Blaauw mechanism. Furthermore, it seems other than

coincidental that the X-ray flux observed is that appropriate
to white dwarf accretion, Eddington limited. (Note that the

distance estimate from ANS is independent of mechanisms or

assumptions regarding X-ray production.)

The red companion must trigger the repetitive outbursts,
requiring that it be very close to its inner critical Roche

surface. The behavior required here, in fact, is
reminiscent of the late-type sub-giant secondaries of Algol-
like close binaries. These stars loose mass due to some

instability of their convective envelopes, providing accreting
material to the companion. Not only is the time interval

(58 yrs) between outburst easily accommodated in this
picture, but the mass lost by the sub-giant is large enough
to power the X-rays for the needed time. For example, in
Biermann and Hall's study of u Cephei (Biermann and Hall, 1973)
there were two period changes in a 50 year interval for which
the implied mass loss rates were 10-4Me/yr. On the other

hand, a 1Me white dwarf requires only 10-5Me/yr to reach the
Eddington limit; i.e., Algol-type mass transfer is sufficient.
Transfer of material from the companion would form a disk
about the compact member. Accretion of material by it from
this disk would power the X-rays. The model leads to the
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obvious speculation that the X-ray-precurser (Willmore, 1975)
might be due to an initial infall of low angular momentum

material directly onto the compact companion. Again, it
is a curious fact that radio emission noted early in the

history of the outburst had a flat spectrum, like that

noted for the binary star radio sources, which are well
represented with sub-giant active members. Is the seat of

ra_io emission in A0620-00 then the late-type star itself?

COMPUTATIONS AND PREDICTIONS

We will now show that consideration of the X-ray irradiation

of the K-star will yield results in accord with the temperature

and spectrum of the optical radiation, and with the X-ray
and optical e-folding decay times.

The total power available to the K-sub-giant depends only

on the fraction of 4_ steradians subtended from the x-source,

or LA = (0/4_) Lx. We also have, for 0.1 _ MSG/M x _ 1.0,

0.12 _ 0 _ 0.44. Since L x = 4.5 x 1037R 2 erg/second, we
have for the available power:

LA = 3.6 x 1036 dR 2 erg/second.

The X-radiation will be absorbed by the K-star, thermalized

and re-radiated. The effective temperature of the re-radiated

energy will be given by

Te = 3.2 x 104(R/r) 1/2 (_/f)l/4 OK.

Here r is the radius, in solar units, of the K star and f

is the fraction of the total surface area heated by the X-ray

source. If we take R = 1.5 kpc, rSG = 1.5R_ and _ = 0.44,
we have for f = 0.5, Te _ 30,000VK. Since the visual magnitude
during the outburst reached 11_2, the above temperature with

a typical O-star bolometric correction yields MBOL=-8.3
with corresponding luminosity

Lop T = 1.47 x 1036R 2 erg/second.

Thus the X-rays can power the observed radiation. As was

noted in our paper referred to earlier, the line-free nature

of the optical spectrum is that expected for a stellar

atmosphere heated by a strong soft X-ray flux. The ionization
balance is then dominate-'d-]5_--the X-ray flux yielding a very

high ionization temperature and an emission dominated by
continuous mechanisms (free-free and recombination) as is

consistent with the featureless optical spectrum. The
fourth power of the effective temperature, Te =, of the

emitting region of the late-type star is directly proportional

to the Arradiating X-ray flux, while the optical flux, say
at 4330_ (B effective wavelength for O-stars) is assumed

given by a Planck function. We know that the e-folding time

for the X-rays (total flux) is _ 27 days and for the _ k4330
flux it is _ 69 days. Within our single temperature
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parametrization of the optical radiation (which could be
regarded as an average temperature) there can be only one

initial temperature T o which yields such decay times. At
4330 we have,

B4330 = B o e -t/69,

while for the total flux we have

= e-t/27 e-t/ 4 x 27
L x Lxo , or T e - Teo -

Teo e -t/108"

With

bln Te/bt = -'1/108; bln B4330/Bt - -1169,

then

In B4330/bln T e = 1.57.

From Planck's law

in B4330 3.33 -3.33/T47 -1f(T._ -- _ _ _1 - e
" e" din Te L4 L. -J

(T 4 = 10 -4 T e )

- 1.57

We thus obtain the following table:

T 4 f (T 4)

3.2 1.61

3.4 1.57
3.5 1.55

4.0 1.47

An average initial temperature for the emitting region
of about 34,000 is inferred consistent with our earller

derived temperatur6. According to Wu (1975) the dereddened
UV flux was that of a 28,000 K black body. We should not,

however, place too much confidence in the agreement of these

figures, due to the unsophisticated treatment of the
irradiated region. Furthermore, the actual optical thickness

of the radiating region is unknown, so that the emergent
spectrum, while continuous, may not be Plancklan.

We expect that A0620-00 is a low mass (_ 2M_) close binary
system, so that orbital period of a fractio_ of a day would

be expected. The orbital inclinatlon is expected to be
low, for the observed soft X-ray spectrum suggests little

absorption by the accretion disk. In optical data then,
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expected periodic light changes due to the heated region

of the sub-giant may be small. The optical observations

reported by Duerbeck and Walter (1975) are noted as

showing evidence of variation of a possibly periodic nature.
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A0620-00

Discussion

A. P. Cowley:

An alternate model to that discussed during this meeting (i°eo, white

dwarf + low-mess main sequence star) is one in which the binary system

contains a red giant as its non-degenerate member°

The fact that the observed B-V color (about +2 mag) of A0620-00 at

minimum light is so red suggests that one might primarily be observing the

non-degenerate star at that time. If that is the case, then the amplitude

of the nova outburst (observed as about 8 magnitudes) can only be consid-

ered as a lower limit on the full range, and thus one should be cautious

about using this amplitude to obtain other parameters of the system.

At this maeting, we heard reported the photometric observations of Duerbeck

which have late-type giants as companions of their degenerate members.

GK Persei, for example, contains a K-giant and has an orbital period of

about i.9 days. T CrB has an M-gia_L ......... t- _-__i .^.;_ _o

near 225 days. Thus one expects periods of several days or more, as

opposed to fractions of a day.

This hypothesis predicts that the late-type giant should be observable

spectroscopically when the brightness of the source has dropped by about

three magnitudes from maximum. Finally, even now, some of the infrared

luminosity might arise from this proposed cool giant.

N. V. Vidal to S. Holt:

Since at some stage the shell is developing (emission lines in the

optical region) it would be interesting to follow the position of the

low energy cut off in the X-ray spectrum°

367



INTRODUCTION TO CYG X-I X-RAY PANEL

Elihu Boldt

NASA/Goddard Space Flight Center

Greenbelt, Maryland 20771

STATUS OF X-RAY OBSERVATIONS:

SPECTRAL STATES

i) Stable (years)

dL/d(hv) _ i0 _s (hv)-°'6ergs cm-es-lkeV -I

L _ i0 svergs/s (2-40 keV; 2.5 kpc)

Unstable (months)2)

TRANSITIONS

Anti-correlation:

Radio association

soft and hard

intensities

PERIODIC BEHAVIOR

Absorption dips (5.6 days)

FLUCTUATIONS

Shot-noise behavior:

_20 events/s (stable state)

>i00 events/s (unstable state)

Basic underlying event:

Energy _ 103Sergs. Duration _ 0.5s

BURSTS

Duration _ 10-3s Rate _ 10-1s -I

Energy emitted _ I0a6 ergs/burst

Added soft component?

High energy cut-off?

One component?

Two Components?

Correlation to radio

(phase, intensity,
........ _o

Phase stability?

Multiplicity?

Preludes to transition?

......... r .............

Entire emission shot-noise?

Characteristics invariant?

Duration independent of

(hg)?

Absence of substructure?

Random?

Spectral difference?
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CYG X-I X-RAY PANEL SUMMARY

Elihu Boldt

NASA/Goddard Space Flight Center

Greenbelt, Maryland 20771

INTRODUCTION

In the introduction to this panel I briefly summarized, in tabular form,

my own evaluation of the status of X-ray observations° Along with several

general aspects of the X-ray emission that appear to be quite well established,

I indicated some rather specific questions that present themselves when we

try to piece together all the observed phenomena into a coherent phenomono-

logical picture. In many instances this involved more data and/or analysis

than was available in the published literature prior to this meeting, and

the purpose of listing such questions as sn introduction to this panel was to

provide a framework for extracting some of the answers I expected from the

more recent work to be reported here. Following the format of the introduction,

I have outlined an updated status of X-ray observations based upon the dis-

cussions in this panel. References to panel members by name are to their

papers in this proceedings.

SPECTRAL STATES

Although Cyg X-I is notorious for spectral variability, largely due to the

pioneering UHURU satellite monitoring of the unstable behavior during the

few months preceeding the transition of March - April 1971, we have now heard

of the increasing evidence for regularity° Two detailed broadband (2 - 40 keV)

rocket-borne experiments (Rothschild et al., this symposium) separated by a

year (October 1973 - October 1974) obtained identical power-law spectra

(energy spectral index _ = 0°55). Further long-term monitoring over a narrow

band (3 - 6 keV) since October 1974 with Ariel 5 (Holt et al., this symposium)

shows that, until the transient event of April-May 1975, Cyg X-I was one of

the most stable strong sources in the sky, exceeded in stability only by the

Crab Nebula. However, balloon-borne experiments (Mstteson et al., this

symposium) prior to 1973 show that the hard X-ray behavior (well above 20 keV)

varies considerably, even as regards high energy cut-off, during times when

the lower energy spectrum was likely to have been stable°

An examination of data prior to the transition of March-April 1971 reveals a

relatively stationary spectral intensity at about 8 keV (Matteson et alo,

this symposium) over wide variations of energy spectral index (i.e. _ =

1/2 - 3)° When the overall spectrum (2 - 200 keV) was steep, such as in

September 1970, no high energy cut-off was detected. The suggestion by

Matteson (this symposium) that a single powem-law component of variable index

may be sufficient for describing most spectral changes has important theo-

retical implications for the emission model involving soft photon Compton-

ization in a hot accretion disk (Eardley, this symposium). The anticipated

spectral component representing the soft photon reservoir may only rarely,

if ever, exhibit itself above about 2 keV.

370



TRANSITIONS

It has become apparent from this panel that there are distinctions to be made

between transitions and transient events. The event of March-April 1971,

when the 2-20 keV spectrum stabilized and the radio source intensity increased

to observability, was the clearest example to date of a transition and may

have been the only one. While the event of April-May 1975 may have signaled

the onset of increased transient behavior (Holt et al., this symposium), such

as the subsequent "flare" of September 1975 (Canizares et al., this symposium),

the radio intensity exhibited activity at an increased level rather than the

decrease to be expected for a real transition back to the state that existed

immediately prior to March-April 1971.

PERIODIC BEHAVIOR

Earlier indications of X-ray variations associated with the 5.6 day binary

period have been clarified and considerably extended. The classical absorption

dips seen with the OAO-Copernicus and 0SO-7 satellites do occur preferentially

near to superior conjunction, but with consideraDie scatter involving no

obvious systematic trend (Murdin, this symposium). Observations with the

of absorption dips may be a rather permanent aspect of the Cyg X-I emission,

possibly occurlng during every cycle of the binary during some epochs and

with a variable complex profile (e.g. mu£tipilclty). The Ariel 5 m oni=or

(Holt et al., this symposium) shows a pronounced decrement of intensity in the

vicinity of superior conjunction by an amount that greatly exceeds that which

may be accounted for by the classical absorption dips, even if the compli-

cation of multipllclty is introduced. That this modulation increased prior

to the large event of April-May 1975 and then possibly disappeared afterwards

suggests that further tracking of this effect could provide us with direct

evidence for conditions that lead to transient behavior.

Discussions of possible periodicities other than at 5.6 days showed that there

was no positive evidence for such, where the periods searched for ranged

from a few hours to about a month.

• FLUCTUATIONS

On time scales from a fraction of a second to hours, the fluctuations in the

intensity for the stable spectral state (at ~ 2-20 keV) may be described by

shot-nolse arising fro_ events of fixed decay time (7 _ 0.5 s) occuring at an

average rate _ _ 20 s -_ (Weisskopf, this symposium). Measurements prior to

the transition of March-April 1971 indicate that, although k may vary con-

siderably, the decay time 7 to be associated with the basic underlying events

remains remarkably invariant and is thereby providing us with a fundamental time

constant for the emission process. During the stable state _ch if not most

of the emission arises from such events, independent of photon energy (at

least within the band _ 2-20 keY).

Tracking the shot-nolse parameters % and T on time scales of days has turned

up a possible correlation with binary phase (Weisskopf, this symposium)

which needs to be pursued further. Direct fluctuations of intensity on

such time scales indicate that there may be some pronounced .stochastic

behavior in addition to the shot-noise discussed for shorter times.
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If the bulk of the X-ray emission is shot-noise due to random events at the

rate % _ 20 s -I, then the energy per event is about 1036 ergso However, this

value for the energy depends critically on the fraction of the emission that

is shot-noise and could be an order of magnitude less if the shot-noise

fraction were as low as 50%.

BURSTS

The millisecond bursts identified in the emission of Cyg X-I are charact-

erized by an enhanced luminosity that is an order of magnitude greater than

average. Of the 13 clearly discernible bursts so far detected in 230 s of

observation (Rothschild et al., this symposium), only one indicated submil-

lisecond structure and a spectrum definitely harder than average° The

remaining 12 bursts were consistent with an emission process that is homo-

geneous in time during the millisecond duration and a spectrum somewhat softer

than the overall emission, but st a level of statistical significance cor-

responding to less than 3_o

It appears that the phenomenon of millisecond bursts might well represent

the most precise and telling aspect of the X-ray emission from Cyg X-I. By

comparing individually measured events, we are led to consider that, for the

most part_ they represent a process with sharp characteristics° Each burst

carries: i) a spectrum close to that of the overall Cyg X-I emission,

2) an energy of about 1035 ergs which is likely to be comparable to that of

the basic shot-noise event defining the bulk of the fluctuations in emission

and 3) a millisecond time constant that might represent an effective

"free-fall" for disturbances in the accretion disk° Are these bursts random

events? We need more data to decide on potential correlations.
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SAS-3 OBSERVATIONS OF AN X-RAY FLARE FROM CYGNUS X-I*

C. R. Canizares, H. Bradt, J. Buff and B. Laufer

Center for Space Research and Department of Physics

Massachusetts Institute of Technology

Ca_ridge, Massachusetts 02139

ABSTRACT

Preliminary results are presented for the

SAS-3 observation of an X-ray flare from

Cygnus X-I in 1975 September. The 1.5-6

keV intensity rose by a factor of four and

exhibited variability on several tin_ scales

from seconds to hours. The 6-15 keV inten-

sitv showed less activity. The event is

similar to that observe_ in May Dy ANS an_

Ariel-5, but lasted less than two weeks.

We present preliminary results from a SAS-3 observation of an

enhancement in the X-ray flux from Cygnus X-I which occurred

in 1975 September (Primini 1975). The results are based on

quick-look data from the long slat collimator experiment col-

lected both while the satellite was spinning and when it was

Figure i shows a history of the 1.5-6 key X-ray acLivity of

Cyg X-I from 1975 May to September. The first observations

were made shortly after the la_%ch of SAS-3, when the source

had just resumed its "low state" following the blay enhance-

ment studied by ANS and Ariel-5 (Heise et al. 1975, Holt

et al. 1975, Sanford et al. 1975). The X-ray intensity

r-ema-[ns roughly constant through the su_aer months until

Sept 6.5 when it begins to rise, eventually reaching a value

four times its previous level. The 6-15 keY intensity was

more nearly constant throughout the whole period with some

indication of variability of about a factor of two.

The data obtained during the enhancement are shown in Figure

2 on an expanded scale. The onset of the event in the 1.5-6

keV band occurs over about one day, as it did during the May

enhancelaent (Holt et al. 1975). There is evidence for very

large variability during the event with time-scales of hours.

*Supported in part by the National Aeronautics and Space

Administration under contract NAS-5-I1450. (CSR-P-75-31)
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The event is mainly evident in the softer channel, represent-

ing an increase in the photon spectral index from %1.8 to

_2.6, but there is also considerable variability in the 6-15

keV channel apparently not directly correlated to the fluc-

tuations at lower energies. The decay of the event is more

rapid than the previous one--later SAS-3 observations indi-

cate an overall duration of less than two weeks, whereas the

May event lasted a month.

Short time variability was also observed during some of the

pointed observations made with the source near maximum inten-

sity. Figure 3 shows raw quick-look plots for two observa-

tions separated by about three hours. The first has clear

indications of intensity fluctuations with time-scales of

10-100 sec, while the second does not.

The event observed by SAS-3 and reported here is clearly

similar to the May event in spectrum and intensity. However,

its short duration makes it appear much more like a "flare"

caused by some unstable, transient phenomenon than like a

metastable "high state" as was suggested by the Uhuru obser-

vations (e.g., Boldt 1974). The indication of short-term

variability at maximum intensity may bear on the size scale

of the region responsible for the enhanced emission (Thorn

1975). Detailed analysis of the data now in hand and of the

production data when they are available may help bring new

insight into the detailed character of the source.
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during the September outburst. The satellite was pointed steadily
at the source during these observations. Data are shown for two
broad energy bands and are binned in 1.6 see intervals, Sudden
gaps are due to data dropouts. The decrease at the end of the
Sept 8.48 observation is due to Earth occultation of the source.
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FORMATION OF HARD X-RAY TAILS

Douglas M. Eardley

Department of Physics
Yale University

New Haven, CT. 06520

ABSTRACT

X-ray observations of Cygnus X-1 have shown a power-law

spectrum. I discuss a natural way that this spectrum might

arise: Inverse Compton scattering of a soft photon flux in

soectrum may vary if source conditions vary.

INTRODUCTION

An optically thick accretion disk around a 10M® black hole

ought to emit a very soft X-ray spectrum at luminosities of

a few times l037 erg s-1, because of the huge emitting area,

l05 km 2 This difficulty has bedeviled attempts to inter-

pret the remarkably hard observed spectrum of Cyg X-1

(Thorne and Price 1975, Lightman and Shapiro 1975). Recently

Lightman, Shapiro and I (Eardley et al. 1975, Shapiro et al.

1975) found a way around this difficulty. We showed that there

exists a second, quite different solution to the structural

equations for an accretion disk, subject to the same boundary

conditions, which can fit at least the "non-flaring" or "low-

state" data fairly well (see, e.g., Agrawal et al. 1972,

Haymes and Harnden 1970, Frontera and Fuligni 1975). The

old, "standard" solution (Pringle and Rees 1972, Shakura and

Sunyaev 197B, Novikov and Thorne 1973) tends to be optically

thick, geometrically thin in the vertical direction, and cool

(kTsurfac e _ 1 keV); I'll call it the "cool disk". Our new

solution consists of a very optically thin, very hot, two-

temperature plasma (kT e % 100 keV; 300 keV _ kT i _ 300 MeV),

and tends to be so geometrically thick that it may be more
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of a cloud than a disk; I'ii call it the "hot disk". The

hot disk cools by inverse Compton scattering of soft photons

off the hot electron gas, and gives a much harder spectrum;

see Fig. i.

INVERSE COMPTON SPECTRA

My main purpose is to describe, in a more or less model-

independent way, the shape of an inverse-Compton spectrum,

based partially on new results reported this year by Shapiro,

Lightman and myself (Shapiro et al. 1975), and independently

by Katz (1975). A hard, inverse-Compton "tail" forms when a

soft X-ray source, of characteristic photon energy ESoft ,

shines out through a hot cloud, of electron temperature

kT e >> Esoft. (I assume kT e ~< meC2 = 511 keV in what follows.)

The total number of photons is not changed in the formation

of the tail, because Compton scattering conserves photons;

but the total luminosity can increase enormously, because the

mean photon energy increases. In Sco X-1 the observers may

possibly be seeing a fairly weak inverse Compton tail as the

hard excess (Peterson et al. 1966, Riegler et al. 1970,

Zel'dovich and Shakura 1969). In Cyg X-l, most theorists

believe that the observers are seeing a very strong tail

formed from a weak photon source, a source perhaps so soft

as to be unobservable behind the interstellar absorption

(_oft _ 1 keV?).

The shape of the tail is fairly simple, and seems to be

independent of source geometry, shape of soft input spectrum,

and other mundane aspects (although further theoretical work

is needed on this question). In terms of spectral energy

intensity I(E) _ dL/dE, it is a power law between Esoft and

kT e ,

I(E) _ E-m, Esoft _< E < kT e , (la)

where kT

m -- -23- + [_ + (----_ Nscat)-l] I/2 (ib)
m c
e
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(the last term in the square root needs, strictly speaking,

a relativistic correctlon; see Shapiro et al. 1975). Here

Nscat is the mean number of scatterlngs suffered by an

outgoing photon, which is related to Thomson ootical depth T

of the hot cloud in a somewhat geometry-dependent way:

roughly,

Nscat _ T, T _ l; (2a)

Nscat _ T 2, _ 2 1. (2b)

Above E = kTe, the spectrum cuts off very roughly like an

exponential,

I(E) _ exp(-E/kTe), E? kT e ; (3)

See Fig. 2. The observer, if he or she snoulG De SO lUCKy Or

persistent as to see the whole spectrum, can infer the electron

temperature of the hot cloud from the location of the knee at

E = kTe, and then infer Nscat, and then T, from the fitted

spectral index m, through Eqs. (!) and (2).

[The shape is more complicated if (kTe/meC2) Nscat becomes

greater than 2 or so; the simple knee at E = kT e is replaced

Dy a hump above the power law, followed by a cutoff above

_BkT e. There seem to be no sources that look like this in

the hard X-ray, so I'll ignore this "saturated" case. The

"unsaturated" case I'm discussing lles in the range 1/20

(kTe/meC2) Nscat < 2.]

Why an X-ray source picks a certain value of spectral index

m is largely determined by the internal energy budget. If

the luminosity LHard that the hot cloud wants to deliver is

much greater than the luminosity Lsoft of the soft source,

then m cannot be steeper than about l, and in fact m will

stay close to 1 (say 0.5 _ m < l) for a fairly wide range

of LHard/Lsoft (say a factor of 6). In our hot-disk model,

we interpret the "low-state", or "non-flaring", data as an

inverse Compton spectrum with a knee a little above 100 keV
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and a spectral index m_0.5 to 1.0. Changes in m should occur

if the ratio LHard/LSoft Changes in the source. We cannot

predict such changes in detail, because we presently are unable

to model the soft photon source in detail. However, our model

definitely predicts (a) a knee somewhere near 100 keV, and

(b) at an_ one instant, a simple power-law spectrum from the

knee down to Esoft , which for several reasons we expect to be

below 1 keV. The spectral index m could conceivably change in

_l sec. (timescale for inner part of disk to fill or dump); on

the other hand, m might remain constant for very long periods

if the mass flow is steady. The balloon observations reported

here by Matteson et al. (1975) seem consistent with these

predictions.

Sunyaev, Shakura, and lllarionov (unpublished) have recently

found that an Inverse-Compton spectrum has a knee at _150 keV,

even if kT e substantially exceeds 150 keV, because of the decrea-

sing Klein-Nishina cross-section.

TRANSITIONS OF CYG X-I

The "flares" or "transitions to a high state" in Cyg X-1

(Tananbaum et al. 1972, Boldt et al. 1974, Heise et al. 1975,

Holt et al. 1975, Sanford et al. 1975, Boldt 1975) seem to

require a further complication of the model; I believe the data

to be good enough to support such a complication. One possible

source of the increased soft flux (E_10 keV) is some gas dis-

tant from the hole, heated by the hard flux, as suggested by

Thorne (1975). Another possible source is an annulus of cool

disk, surrounding a core of hot disk around the hole (Fig. 3a);

this picture is plausible, but the predicted soft flux is too

soft to match the observations (Thorne and Price 1975, Shapiro

et al. 1975). A third possibility, which I'll concentrate on

here, is that the excess soft flux is an inverse Compton

spectrum formed in a hot disk, Just as in the low state, except

that the soft photon source has now become extremely luminous

for some reason, Lsoft>>LHard , which forces the slope to become
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very steep. (For instance, some vestige of a cool disk might

exist occasionally in the equatorial plane of the hot disk;

this situation has been examined by Price and Liang (1975).

See Fig. 3b.) Let me illustrate the spectral changes that

might be expected for this third possibility. If Lsoft were

to remain constant while LHard varied, one would see a direct

correlation between observable luminosity and spectral hardness

(Fig. 4). This doesn't look much llke the observations. On

the other hand, if LHard remains constant (at, say, 2 or 3 x

l037 erg s-1) while Lsoft varies wildly, one sees a striking

anticorrelatlon between luminosity and hardness (Fig. 5). The

spectrum at any one instant is always a fairly accurate Dower

law, but the spectral index varies widely (m = 0.5 to m = 4 in

_**_ _,_pA_; ; anu une specurum aAways plerces _ne same "plvo$

point" (at E % l0 key in the example). This model behavior is

consistent with these actually observed effects: (a) Greatly

increased number flux below _i0 keY; (b) Accurate representa-

tion by a power law at any one time, at least below i0 keV;

(c) Anticorrelation of intensity above i0 keV with that below.

There is one possible inconsistency: The model predicts that

5he whole spectrum below _100 keV ms an accurate power law

(1975), and Sanford et al. (1975) report an excess at E_I0 keV

over the extrapolatlon of the steep, low-E power law, an excess

which perhaps represents a nearly unchanged version of the low-

state, flat power law. As the theoretically simplest resolution

of this inconsistency, let me suggest that the reported spectra

might be time-averages of a single power-law with a strongly

tlme-dependent slope, i.e. time-averages over many spectra as

in Fig. 5. As a minimum timescale for major changes, %1 min.

seems likely. If this idea of a tlme-dependent, simple power-

law is wrong (and several groups may already possess the data

to shoot it down), that is, if the source really has two in-

trinsic spectral components in "high state", then I would al-

ternatively suggest that each separate component (E<I0 keV,

E>10 keV) might be an independent Inverse-Compton spectrum,

i.e. a separate power-law, as seems likely if both originate
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near the hole in different regions of the disk.

I emphasize that Fig. 5 does not result from a complete

model calculation; the hot disk is modeled with some care,

but the soft source is stuck in ad hoc. The shapes of

the spectra above _l keV should be taken seriously, but

not their precise relative normalization.

I am grateful to numerous participants of this symposium

for helpful conversations, and to K.S. Thorne for helpful

communications. This work was partly supported by the

National Science Foundation (Grant No. GP-36317).
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ABSTRACT

Observations of Cyg X-i between October 1974 and July 1975 reveal

a persistent 5.6 day modulation of the 3-6 keV x-ray intensity, having
_ __-_ .... 4_ _ ...... _ ....°_4n_ _n_s,nrt_nn nf the HDE 226868 binary

system. The modulation is found to be most pronounced just prior to

tile April-May 1975 increase of Cyg X-l, after which both the modulation

and intensity are at their lowest values for the entire duration of

Ehe observations. These data imply that the x-ray omission from

Cyg X-I arises from the compact member of HDE 226868, and that the

increase of April-May 1975 may have represented the depletion of

aceretlng material which had not yet been mixed into a cylindrically

symmetric accretion disk abouu uhe compacL memSe_.

Sublect headinKs: x-ray sources---black holes

Accepted for publication in Ap. J. Letters
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I. INTRODUCTION

Cyg X-I has consistently been associated with x-ray intensity

variability on virtually all time scales (c.f. Boldt, et al. 1975).

In contrast to its chaotic behavior on timescales N i sec (c.f.

Rothschild, et al. i974), however, the presently reported data indicate

that variations from one day to the next are typically within the

_I0% statistical uncertainty of the data. The relative constancy

on this timescale is perturbed only by a persistent 5.6 day

modulation in phase with the binary period of HDE 226868. The effect

is too large to be sensibly associated with "absorption dips" previ-

ously reported, but the coincidence in phase over >30 cycles would

appear to dispel any doubts which may remain about the association

of Cyg X-I with HDE 226868.

On longer timescales, the present data yield an apparently mono-

tonic slow increase until the sudden factor-of-three increase of

April-May 1975, after which the Cyg X-I intensity is lower than before.

Apparently tracking the Cyg X-I intensity is the magnitude of the 5.6d

modulation. Both of these results can be interpreted as arising from

an elevated amount of matter between the binary components prior to

the Apri_May outburst which mal_ifests itself in both an increasing level

of emission as the material is accreted Onto the secondary, and increased

absorption at HDE 226868 superior conjunction.

II. EXPERIMENTAL RESULTS

All of the data reported here are obtained from the Ariel-V All-Sky

X-Ray Monitor, a complete description of which may be found in Holt (1975).

The experiment is a scanning x-ray pinhole camera which observes most
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of the celestial sphere each o_bit. The important parameters are a

pinhole area of i c,-_, an average duty cycle for source observation of

1%, and an efficiency of N 60% in the energy range 3-6 keV. The

finest temporal resolution of the experiment is one orbit (NI00 minutes),

and there is no energy resolution available in the data within the

3-6 keV acceptance window.

Figure i displays the Cyg X-I data reported here in daily averages

(the gaps are times when the source was out of the useful field of

view of the experiment). The increase in the spring of 1975, first

reported by Gursky, et ai.(1975)_ commenced on 22 April (Holt, et al.,

1975), apparently reached maximum in early Mmy (Heist, eta!. 1975),

and was well on the way to recovery _o Lh_ p_-fi_Le &Gate by -_=,_-_j"-'"

(Sanford, et al. 1975). I_ was out of the field-of-view of this

experiment during the decay phase of =he flare-up, and when next

unambiguously observed in early June 1975 it had apparently returned

to its pre-flare low-intensity level.

The same data which were used in the construction of Figure 1

(excluding only the flare-up) were searched for the binary period of

HDE 226868 by direct folding of individual measurements taken over no more than

1/2 day. As shown in Figure 2, there is a significant X e deviation

from the assumption of source constancy at the HDE 226868 period of

5.60089 days. Important, also, is the observation that the largest

contribution to this X s is from the bin centered at superior conjunction

of the binary system; the period and phase of HD 226868 used here

are from the Copernicus ephemeris (Ymson, private communication, 1974).

As a cheek on the stability of the effect, the data were broken into
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56 day intervals which were each folded at the same period and

phase as in Figure 2. These results are displayed in Figure 3, where

_he bin ce_tered at superior conjunction is always a mini_m prior to

=he increase of Aprii-Y_y 1975, but may not be afterwards. Similarly,

the average _ntenslty of the source after _t_y 1975 appears to be less

than before, in should be noted that the error bars in all three

figures are statistical only, and there are systematic effects (mostly

arising from pointing inaccuracies) which are not recoverable. These

appear to play no significant role in the 5.6d folds (as evidenced _"_

the lack of a 5.6d component in the Crab Nebula), but could conceivably

be important in the interpretation of the gross intensity variation of

7igure 3. We estimate that the true error on the four _values

in Figure 3 is no larger than the statistical error displayed for each

individual bin, as the Crab Nebula is found to be consistent with constancy

over the entire interval with a smaller systematic contribution to the

error. Figure 3 demonstrates, therefore, that Cyg X-I exhibited a slowly

increasing intensity and 5.6d modulation until the April-May 1975 increase,

after which both were significantly lowered. We note that a linear extrapola-

tion of the trend indicated for the data over the interval October 1974

to April 1975 backward in time to October 1973 would imply that the

average intensity one year prior to the launch of Ariel 5 could have been

lower by a factor of about tw% whereas rocket-borne observations (Rothschild

et al. 1975) on 4 Oct. 73 and 3 Oct 74 indicate that the 2-40 keV

absolute spectrum (averaged over about a minute at a binary phase of 0.17) was

invariant to within a limit of about 10% for any likely error in

normalization. This suggests that _he timescale for the build-up to the

April-May 1975 flare is no more than -- 1/2 year.
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III. DISCUSSION

The 5.6 day modulation of the Cyg X-I intensity cannot be solely

attributed to "absorption dips". Such maxima have been reported by

Mason, et al. (1974) and Li and Clark (1974) with the following "typical"

characteristics:

i) a spectral hardening attributable to absorption by cold matter in the

llne of sight which would amount to no more than 50% decrease in

the 3-6 keV acceptance window of this experiment

2) a binary phase within _ 10% of superior conjunction

3) a duration of N i hour

4) a probability of occurrence of < 50% at each superior conjunction.

These characteristics imply a overall light curve decrement arising from

absorption dips of .002, compared with the .027 _.004 actually observed in

the April-June 1975 outburst are used). A recent observation from ANS in

.... J ......

absorption dip situation around that superior conjunction (including three

absorption dips). This does not substantially alter the "typical" situation

inferred from the previous observations (based on >i0 superior conjunction

measurements), but does indicate a larger fraction of the presently

....... ; ; ....... + .... k= ig _enern]Ized absorption

phenomenology which characterized Cyg X-I between October 1974 and April 1975.

Sanford, et al. (1974) have reported a 5.6d modulation of the Cyg X-I

intensity over a single cycle which may be relatable to the present measure-

ments. Although the predominant feature of their light curve is a

relative maximum at inferior conjunction, the magnitude of the effect

is similar. Utilizing the present prescription of calculating the

decrement in the 20% of the binary phase centered at superior conjunc-

tion relative to an average for the whole cycle calculated from the

remaining 80%, we estimate that the Copernicus "decrement" amounted

to -- 0.05. These authors remarked that this magnitude was not in

conflict with the lack of detectable 5.6d modulation in 35 continuous
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days of b_URU observation (Tananbaum et ai., 1972). It may be

important to note, however, that the VHURU search was performed less

than a year after the spring 1971 transition to its low-intensity

state, while the Copernicus observation was performed two years after

the UHURU study. If the trends in the presen$ data are an indication

of wha_ might have happened after the 1971 transition, the Copernicus

data may have been taken during the build-up phase to another flare

while the UHURU data were not.

Mason et al., (1974) have interpreted the absorption dip phenomenon

as arising from the core of a stream of cold matter between the two

components of the H DE 226868 system which occasionally intercepts the

line of sight to Cyg X-I. It is tempting to postulate that the presently

reported 5.6d modulation is a lower-level absorption effect. The

simplifying assumption of a cosine line-of-sight circumstellar matter

distribution centered at superior conjunction yields an average column

density in the central bin of Figure 2 of 94% of maximum, while the

adjacent bins have a column density of less than 1/3 maximum (there is

no absorption contribution to the two outermost bins). Assuming universal

abundances in cold matter, Brown and Gould (1970) cross-sections yield

a columm density of N 2x10 _ H-atoms cm -_ in the line-of-sight at

superior conjunctio_ This amount of cold material should have caused a

severe reduction in the intensity of x-rays of lower energy than can be

measured by this experiment (at least during the time of our observations), but

such an effect has not been reported by other investigators. There are several

possible resolutions of this apparent inconsistency. Either a high circum-

stellar temperature (_ 10SK) or an overabundance of heavy -Z material

(sulfur and heavier) may be invoked to reduce the relative absorption
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of soft x-rays to hard, but an accretion disk model for Cyg X-i (¢.f.

Pringle and Rees, 1972; Shakura and Sunyaev, 1973; Thorne and Price,

1975) may offer a natural explanation. Here the soft x-rays are

predominantly produced in the outer, optically thick region of the

accretion disk, while uhe hard component is produced much closer to

the accreting black hole (Thorne and Price, 1975, estimate the

transition between "soft" and "hard" to be at:N 2 keV). An increase

in the density of the stellar wind to the accretion disk would then

have the effect of shadowing the hard emission more efficiently than

the soft, arid could also yield an increased soft emission owing to a

higher accretion rate. Both of these effects would tend to mask any

with this qualitative explanation is the slow increase in hard x-ray

emission, as the characteristic gas drift =ime into the hard x-ray-

emitting region of,the disk is > 1 month (Thorne and Price, 1975).

IV. S_Y

The present data yield an u_mistakable association with HDE 226868

which is independent of the interpretation which we have ascribed to

the overall variation in intensity and modulation. The X _ distribution of

Figure 2 does not allow a period which differs by more than 4x10 -a

of the HDE226868 period of 5.60089d, and the minimum at superior conjunction

prior to the April-Y_y 1975 flare-up is similarly suggestive of a firm

association.

The interpretation we have given the intensity and modulation variation

may not be unique, but is consistent with this and other observations.

We suggest that stellar wind pile-up from the HDE 226868 primary, in !

loading the Cyg X-I accretion disk, is directly responsible for the two
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new effects we are reporting here: the gradually increasing hard

x-ray luminosity, and the low-level line-of-sight absorption around

superior conjunction.

The increasing x-ray emission may, in turn, increase the radiation

pressure to the point where the Lightman and Eardley (1974) instability

may trigger the flare-up of April-May 1975. This "high-intensity"

state was considerably shorter in duration than that prior to the

Ymrch-April 1971 "£ransition", but was typefied by the same high degree

of variability on time scales -- 1 day (c.f. Sanford et al., 1975), in

marked contrast to the regular behavior of the source we report here

in its low intersi:y state. The April-May 1975 increase was the

only such flare-up observed between October 1974 and July 1975, but may

no= have been the first since the 1971 transition.
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We are grateful to John Bahcall for suggesting that we also

include whatever limits our data may allow on Cyg X-I modulation

at periods consistent with a three-body system. We cannot place a

sensible limit on any 30-40d periodicity owing to the sample length

being < i0 cycles, but we can place a firm upper limit of 10% "pulsed

fraction" (5% amplitude slnusoid) on any variation at a period near

the _ 8 hours expected from a close 3-body model.

We also note that the increase of April-May 1975 was characterized

by x-ray variation on a timescale of a few days. Figures 4 and 5

(from Holt, et al., 1975) illustrate this behavior in All-Sky Monitor

data wlth a temporal resolution of i day and _ 1/2 day, respectively,

__a .g^ ^cc... p_..4.t.A _h.n,,ghn,,t th# d_eav (e._. Sanford. et al.. 1975)

The dynamics of the flare phenomenon are clearly reflected in this

characteristic behavior, and any model of the phenomenon should predict

such a few-day tlmescale for factor-of-two variations.

iy .....Last we note two effects in _he "'" _'---*" _ 4_ A.+. +._o.

after that included in the paper, A short-duration increase (firut

noted by SAS-C) was detected at a peak amplitude of >_e Crab Nebula

on 8 September, but it returned to its pre-flare level by 18 Spetember

so that it was neither as intense nor as long-lastlng as the April-May

increase. The second remark is that data taken through mld-October

still show no statistlcally significant modulation at 5.6 days.
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INTENSITY AND SPECTRAL VARIATIONS OF CYG X-I

OBSERVED FROM BALLOONS

J. L. Matteson, R. F. Mushotzky and W. S. Paciesas

Department of Physics, C-Oll

Univers-ity of California, San Diego

La Jolla, California 92093

and

J. G. Laros

University of California

Los Alamos Scientific Laboratory

Los Alamos. NewMexico 87544

ABSTRACT

Observations of Cyg X-I with a 20 to 200 key balloon carried X-ray

telescope in 1969, 1970, and 1972 are presented. These results reveal

the f011owing characteristics of Cyg X-l: The steep spectrum observed

at E < l0 keV duri__g the "radio quiet" phase can extend to 200 keV. This

,_,. m_ul_av_ lasted 21 months (July 1969 to March 1971). The flux
Jr ......... • .......

at 30 keV can vary from I. I x 10 -Z to 1.4 x I0 -3 ph (cmZ-sec-keV) -I and

that at 100keV from 1.4x 10 -3 to 10 -4 . The low flux values are factors

of 3 and 8 below the "normal" values at 30 and 100 keV respectively, are

rarely observed, and may be associated with the ea_lyphase of the 1971

April X-ray transition. During some one hour periods the intensity

remained constant to _ 20% and during other periods it varied a factor

2 in 5 minutes and a factor 10 in I hour. Complex spectral variations

accompanied the intensity changes.
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I. INTRODUCTION

The X-ray spectrum of Cyg X-I has been measured in numerous balloon,

rocket and satellite observations. However, the energy coverage of the

instruments used have not allowed the total spectrum, from _ 0.1 to

N 500 keV, to be determined at any one time. Furthermore, the observed

variability at most.energies make formation of reliable composite spectra

from different observations difficult. Nevertheless, most observations

lie near what we term the "normal" spectrum and which we will use for

comparison purposes. This is a power law, dN/dE N E -c_, with c_N I. 6

at energies below some spectrum break energy E b. Above E b the spectrum

becomes a steeper power law or perhaps an exponential, dN/dE_e-E/Eo/Ee

10-2ph/ 2
The "normal" flux at I0 key is then_ 3 x cm -sec-keV. E b has

been observed to range from 32 keV (Baity et al. 1973) to,-, 120 keV

(Haymes and Harnden 1970). A single power law fi_ through the break

energy will indicate a> I. 6. The "pre-transition" spectra measured by

Uhuru (Schreier et al. 1971; Tananbaum et al. 1972) and the recent

increase in low energy flux seen by Ariel V (Holt et al. 1975) are not

associated with the "normal" spectrum.

To study variations of the normal spectrum, search for departures from it

and determine the relation of > _0 keV variations to those at lower energy,

we conducted a series of balloon flight obserCations from 1969 to 1972.

We.emphasized control of systematic effects in order to measure the

statistics limited spectra required by theoretical models of Cyg X-1.
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II, INSTRUMENTATION, TECHNIQUE AND ANALYSIS

All observations reported here were conducted with the same X-ray tele-

scope (Peterson, PelIing, and Matteson 1972) which will be briefly

described. The NaI(T1) detector had 34.2 cm Z of effective area with a

circular aperture of 5.9 ° FWH.M. It had a 1 1/Z" thick CsI(Na) shield
-1

operated in anticoincidence. The 20 to 100 keV background was ,-- 3 sec

in the 1969 flights and was reduced to,-' 1.2 sec "1 for the late:r flights.

X-ray counts were pulse height analyzed into 256 channels and telemetered

to a ground station. Data were tape recorded and later analyzed at UCSD.

The telescope was carried in a servo controlled balloon gonOoia which

provided absolute pointing accuracy of N 0.5 ° and aspect accuracy of

N 0.1 °. Observations were conducted by holding the telescope's axis

fix.ed relative to the earth and allowing the earth's rotation and balloon

drift to sweep the aperture'over .the X-ray source. Cyg X-1 and Cyg X-3

were always resolved. Background was usually measured before and after

the source exposure. Periodic inflight calibrations using radioactive

Determination of the photon spectrum required three basic steps: 1first,

the background and source counting rate spectra were separated by

finding the counting rate component proportional to the detector area

exposed to the source. Second, model photon spectra at the top of the

atmosphere had their corresponding detector counting rate spectra calcu-

lated and the best fit model parameters and standard deviations were

determined. Third, the counts to photons correction factors o£ the best

fit model were applied to the source counting rate spectrum to give the
Z

photon spectrum. Minimum X defined best fit model parameters and

their standard deviations were obtained using the XZ + 1 method for the

case of independent errors.
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Laboratory measurements verified computer simulation of the instrument

response which included photoelectric absorption, K X-ray emission and

Compton:scattering to all orders in the detector, energy dependence of

the aperture, absorption and scattering by an undesired passive material

behind the detector window, and non-vetoed Compton scattering in the

collimator by high energy X-rays giving lower energy X-ray counts in the

detector. The latter two effects gave a 30% decrease in count rate at

N 25 keV in Flights 46 and 47 only, and a _, 2090 increase in the rate at

•,_ 100 keV for an E -1"8
power law spectrum. Residual atmospheric depth

was measured to an accuracy of 0.1 gm/cm 2. Remaining systematic

errors in our spectra are estimated to be < 1090 in the 25 to 150 keY range

and < 20% in the 20 to 200 keV range.

HI. BALL_ON FLIGHTS

Table I summarizes the balloon flights. The periods of observation are

indicated or, in the case of Flight 47, the center of 40 minute intervals of

one sighting each 14 minutes. All observations were conducted at

3 gm/crr_ 2 residual atmosphere after balloon launch from Palestine,

Texas.
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IV RESULTS

i

Also preserited in Table I are the measured 20 to 200 keV intensities. In

]969 June the intensity was comparable to that obtained in earlier obser-

'rations by many workers, 15 to 30 keV/crn z-sec, characteristic of the

normal spectrum. A month later, during Flight 47, the average intensity

was a factor six lower, During all eight Cyg X-I sightings of this flight

the intensity was low, indicating that the low state lasted at least 6 hours.

Fourteen months later, during Flight 50, the flux was again low. We are

unaware of observations of Cyg X-I above 20 keV during the Flights 47 to

50 interval and therefore conclude that the low intensity state may have

lasted more than 14 months. Flights 60 and 61, in June 197Z, showed that

the average flux was normal. An earlier observation by Agrawal et al.

(197Z) in 1971 April also showed the normal state, so the'low state

lasted less than Zl months.

The X-ray spect'ra measured in this work are presented in Figure 1 and

_,- :..... _I .... _....... _ _ _hl_'T A1thou_h the nower law fit

to the _.i:_._ A_ op_ .... _ =11n_x,,_a fhe spectrum clearlv has a break at

,,_85 keV, steepening from ct =" I. 4 to (_ =" Z. 6 with increasing energy. This

spectrum is normal and is in substantial greement with that observed 5

days earlier by Hayrnes and Harnden (1970). [It also agrees with an earlier

rocket observation at low energies by LRL (IV[aegregor et al. 1970). ]

The spectra of Flights 47 and 50 are, %v'[th[n the errors, the same. (_ for

Flight 60 is uncertain due to instrument background problems. During

Flight 61 large intensity changes which varied with energy resulted in

power law spectra which took on extreme values indicated by the boundaries

of the boxed region.

Figure 2 shows the result of a search for short time scale variations

during Flight 46. On a one-minute scale the intensity is constant to,-, 20%.
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Other energy bands also show a constant intensity. A similar result was

obtained during Flight 50 with a limit of_ 40% on five-minute variations

(Figure 3). During Flight 61, however, the intensity was extremely vari-

able as the three-minute integrations in Figure 4 indicate. In the 0520 to

0620 period the 20 to 200 keV intensity decreased from,-, 30 keV/cm 2 to

,_ 8 keV/cm 2-sec as c_ chang ed.from_ 1.8 ton 2.5. The intensity decrease

was approximately exponential in time with a characteristic time of_ 25

minutes. During the 0815 to 0915 period the intensity increased from

~ 8 kev/cmZ-sec to~ 20 keV/cm 2-sec while c_ changed from_ 1.2 tow 2.

The variations are not as smooth as in the earlier interval. In particular,

the average 22-83 keV intensity is approximately a factor of two higher

during 0850 to 0910 than during 0830 to 0850 while the higher energy

intensity remains relatively consta.nt. In both observation periods the
!

high intensity phases have a_ 2.0. However, in the low intensity state

(_ ranges from-,_ 1.2 to-,_ 1.8.

V. DISCUSSION

The establishment of the relative constancy, to within a factor,-_ 2, of the

low energy spectrum over a period of days, first by Uhuru (Tananbaum

et al. 1972) and mor e recently by Ariel V (Holt et al. 1975), ANS (Heise

et al. 1975) and Copernicus (Sanford et al. 1975) allow spectra taken

within approximately a month to be combined with some confidence. Of

course, one must avoid X-ray transitions such as seen in April 1971

(Tananbaum et al. 1972) or April 1975 (Holt et al. 1975).

Therefore, we combine the spectrum of GSFC (Bleach et al. 1972)

obtained on 1970 September 21, shown in Figure 1, with ours obtained 12

days earlier. The result is a single power law with c_ =" 2.5 which fits the

spectrum from 2 to 200 keV. Its shape is between the normal spectrum

and the < 9 keV "pre-transition" spectrum observed by Uhuru in 1970
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December 21 (Schreier et al. 1971) which had_ = 3.8. We associate the

September spectrum with the pre-transition state. However, the Uhuru

spectrum had c_ = 1.6 for 9 key < E < 20 keV indicating that the E > 9 keV

spectrum underwent an increase in intensity and decrease in C_ in the 1970

September to December period. Thus a complete picture of the variations

near the transition of 1971 April appears to involve at least three phases,

A, B," and C in Figure 5, and summarized in Table IL

The transition from phase B to C has been explained by Thorne and

Price (1975) as due to an increase in the "thinning radius". This caused

the 2 to 10 keV spectrum to cease being produced in the optically thick

outer accretion disk and begin being produced in the optically thin inner

region. For phase A to fit this model, it must be due to a decrease in the

thinning radius to a value such that contribution of the inner region is

negligible below_ 100 keV. Although I and c_ varied greatly in the phases,

the flux at 8 keV remained within 30% of 5 x !0"2ph/cmZ-sec-keV.

L.L=.O_y of Flight 61 has

_zz= a,_zza= b_oa_ -_" .... +^.;=+;o == +_= lnne_ flno_ .qeala variations That is.

low intensity is associated with large a, the extrapolated flux at 8 keV

remaining approximately constant. However, during the second observation

period the opposite occurred. Ia particular, from 0826 to 0831 (binary

phase 0.60) the 22 to 43 keV flux is only (6 -+ 15) x _0"4ph/cm2-sec-keV,

making determination of a uncertain, but requiring a < 1.45 and a flux at

20 keV < 5 x 10-3ph/cm 2-sec-keV, at 95% confidence. Extrapolation of

this Upper limit spectrum to lower energies requires the 2 to 10 keV flux to

be < 0.3 of the normal value. Long term monitoring by Uhuru and Ariel V

have not indicated such large decreases. Absorption events have been seen

by Copernicus (Mason et al. 1974) and OSO-7 (Li and Clark 1974).

These cause ,,_ 50% reduction in the flux at a few keV with a negligible

effect at higher energy. If the low flux we measured at 22 to 43 keV was
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due to attenuation by Compton scattering in some region, the minimum

column density in the line of sight is 2 x 1024 H atoms/cm 2. This becomes

optically thick against absorption at 10 keV, "requiring a total eclipse at

lower energy. Such a phenomenon has not been reported. In any case, the

low flux and hard spectrum seen at N 0828 represent a distinct spectral

state of Cyg X-I. The corresponding low energy state has not been

dete'rmined.

The sudden intensity increase at 0848 is similar to the 20 to 200 keY

variations observed by Agrawal et al. (1972) in 1971 April. They also

observed an X-ray flare in which the intensity doubled for a few minutes

with Ct remaining constant. We have seen no such flares in 6 hours of

observation and conclude that they are rare events.

VI. SUMMARY

We have performed a systematically consistent set of observations of

Cygnus X-1 in the energy range 20-200 keV during the period 1969 June

to 1972 June. The results may be summarized as follows:

1) If lower energy data are carefully included, the "time-averaged"

(after the fashion of Thorne and Price 1975) wideband spectrum shows

evidence for at least three distinct phases, differing significantly in

almost all parameters considered. The inferred flux at 8 keVj however_

remains relatively constant; this may be fortuitous.

2) During most of the observ'_tions variations above 20 keV are small

on time scales of a few minutes. On 23 June 1972, however, considerable

activity was observed, with variations in spectral shape and intensity

being, at best, only partially correlated. Whether such variability relates

to a particular "time-averaged" state is not known.
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3) No significant flares were observed on time scales of a few minutes.

A relatively low probability of occurrence is inferred.

4} A possible "absorption" feature was observed on 23 June 1972. If at

this epoch high energy and low energy X-ray emission had a common origin

the effect below N 10 keV. would have been dramatic, but no such data are

available. Coordinated wideband observations of Cygnus X-1 have obvious

advantages and we recommend them.
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Photon spectra of Cygnus X-1 as measured with the UCSD balloon-

borne X-ray telescope between 1969 and 1972. Also shown are rele-

vant low energy spectra obtained by other experimenters, During the

23 June 1972 flight the source spectra varied within the limits of the

boxed region.
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Figure 5. A summary of the observed spectral states of Cygnus X-1. The letters A, B and

C refer to separate states as discussed in the text. The ordinate is E2dN/dE dA dt,

the advantages of which were noted by Thorne and Price (1975).
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ABSORPTION DIPS AT LOW X-RAY ENERGIES IN CYGNUS X-I

Paul Murdin

Royal Greenwich 0bservator_, Hailsham, Sussex, UK. _

ABSTRACT

Absorbing material in Cygnus X-I jitters about near the line

joining the two stars, out of the orbital plane.

I. THE ABSORPTION DIPS

Three more looks with the Copernicus satellite at Cygnus X-I

have p_oduced four more examples of absorption dips - decreases in

hardness consistent with photoelectric absorption (Mason et al 1974).

The nine now seen, including one by 030-7 (Li and Clark 1974),

are listed in Table !. Their phase in the spectroscopic binary

HD 226868 is also listed, calculated from a newer ephemeris than

_-_ _- Mason ct a! (1o_a_ _aa4_. e%o _=A4al vmlnn4t4es hv Bolton

(1975) and unpublished RGO radial velocities from the 1975 season.

(These elements do not differ significantly fr<)m Bolton's (1975)0)

Table 1

Nine Absorption Dips

Date Phase with respect Duration Log Colu_m densit_N.

.... _ ..... (phase units) (atoms cm -)
(JD - 24WOOO0) conjunction

1628.4 0.00 (end seen only) 22

1684.5 +0.03 0.005 22

1818.6 -0.03 (end seen only) 22

1930.5 -0.05 0.023 24

1986.5 -0.06 0.013 23

2187.6 +0.02 0.037 22

2322.1 -0.12 0.004 23

2322.8 0.00 0°089 23

2586.5 +0.09 0.004 22

The table shows that: (i) The dips occur preferentially near

to superior conjunction, when the B superglant (B) lies between

Earth and the unseen companion (X). (ii) There is significant

scatter about the llne joining the two stars (± 0.i0 of an orbit,

i.e. ±35o). (iii) The angle subtended by the absorbing material

at X varies from 1° to 32 °. (iv) The column density varies by at

least two powers of ten.

Present address: Anglo-Australian Observatory, PO Box 296, Epping

NSW 2121, Australia.
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CA) Is it

A(1)

A(ii)

II. WHAT IS THE CAUSE OF THE DIPS?

the B supergiant?

Its atmosphere? (Like Cen X-3 eclipse shoulders; Pounds

et al (1975).) The dips are not regular enough, can

last too brief a time and the llne of sight passes

too high above the B star's surface (4 stellar radii).

Prominences on B or blobs in a stellar wind ejected from B?

The prominences or blobs have the right kind of

irregularities in phase angle and column density, and

are distributed about the correct axis. Based on an

inclination angle of 30 ° for the orbital plane with

respect to the plane of the sky (Hutchings et al 1973),

however, the prominences or blobs reach 4 stellar radii

above the B star's surface in the direction perpendicular

to the plane, whereas they reach less than 1 stellar

radius from the B star's surface in the direction in the

orbital plane. If they are part of a spherical distribu-

tion about B and the orbit were tilted by only 4 more

degrees we would not be able to see them, This seems a

bit arbitrary. Perhaps they could be ejected from the

polar regions of B. The prominences would, however,

have to be of enormous size, the largest dip subtending

an angle at X almost twice as large as the B supergiant.

The two longest dips show more absorption in intensity than

the increase in spectral hardness would indicate (Mason 1975,

private communication), indicating that they also contain neutral

electron scattering because of greater ionisation. The larger angle

which they subtend at X and the greater ionisation together

suggest proximity to X. At the same time the concentration

of the dips to the line joining the two stars does indicate

that the absorbing material knows about the B star, either because

it feels its gravitational field or because it came from B and

remembers this. This suggests the origin of the absorption is in:

B

B(i)

The gas stream? (Mason et al 1974, Bolton 1975)

Extension of the gas stream perpendicular to the orbital

plane?

Because the inclination of the orbital plane to

the sky is 30 ° (Hutchings et al 1973) and the width of

the stream is not large, the absorption must take place

near to X. The closest approach of the gas stream to

X is 3 R@ (calculations by Lubow and Shu 1975) and at
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this point the z-extension of the gas stream is _O.i R_.

Even given hlobbiness in the gas stream it seems unllkgly

that a higher pressure could drive the stream to a z-exten-

sion as high as the 5RQrequired to intersect the line

of sight. The stream is, moreover, very rigidly hound

to the binary star system, and is unlikely to jitter

by the _0 ° observed, unless the stream is fed by material

ejected from the Lagranglan point at orbital speeds

(103 km/s).

B(ii) Splashes of the gas stream into the z-direction as it plays

onto the accretion disk at the hot spot?(Shu 1975, private

communication).

If the splashes are deflected elastically by the

rigid edge of the accretion disk, they could certainly

reach 5 R(_,_in the z-direction, so they could intersect

the llne of sight. They would also splash with motion

in the orbital plane. One would therefore expect a b_.u_d

distribution in phase angle for the dips, upwards of

60 ° (c.f. the 70 ° observed). However the hot spot is

located at 70 ° to the line joining the centePs of _^

stars as seen from X, whereas the dips are distributed

about the line itself.

There seem to be difficulties whichever solution is proposed,

hut I feel the answer to the problem of the origin of the dips is

important since the dips represent a different mode of mass transfer

in this binary star to the mode evldencedhy the wake seen in

Cen X-3 (Pounds et al 1975). The way in which the X-ray observations

Dmovide a challenge to the optical spectroscopists to continue to

give phases of HD 226868 accurate to a thousandth of a revolution

illustrates well th_ _mpo_tanee of the coordination of observations

of these stars to which this Conference is dedicated.
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OBSERVATIONS OF CYGNUS X-1 IN ITS TWO INTENSITY STATES BY ANS

D. R • Parsignault

Space Division

American Science and Engineering

Cambridge, Mass@chusetts 02139

and

J.E. Grindlay, H. Schnopper, E.J. Schreier and H. Gursky

Center for Astrophysics

Harvard College Observatory and Smithsonian

Astrophysical Observatory

Cambridge, Massachusetts 02138

ABSTRACT

The hard X-raY experiment (I - 28 keV) on ANS, observed

Cygnus X-I in November 1974, and in May 1975, putting

in evidence the two dramatically different states of this

object. The average intensity in November was 15 cts/sec,

and the observations showed remarkable features in the

X-ray light curve and in the spectrum, which were correlated

with the 5.6 days period of HDE226868. The May obser-

vations showed a count rate of ~ 80-100 cts/sec, with

f!uctuat!on-_ np to ~ ]30 cts/sec, uncorrelated with the

spectroscopic binary. The May X-ray spectrum was much

softer than the November one, and possibly was m_de up

of two components.

INTRODUCTION

Cygnus X-I was observed by the hard X-ray experiment on ANS in November

1974, and later in May 1975. These two sets of observations revealed

dramatically different behaviors of this object. In our November observations,

we found that around the time of superior conjunction of the spectroscopic

binary HDE226868, significant changes, both in the X-ray flux

intensity and its energy spectrum were observed. In our May data, the

average intensity had increased by about a factor 6 with respect to its

November value. The intensity exhibited large fluctuations on a time

scale of several hundred seconds, but the observations around the time

of superior conjunction did not show the features observed in the
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Novemberdata. The'X.-ray spectrum in. May, which was much

softer than in November, was found to be remarkably constant durtng our

8 days of observation.

THE EXPERIMENT

Cygnus X-I was observed by ANS from 3h 36mln UT, November 3, 1974,

ufitil 2h 40mln, November 9, and six months later from lh 09mln UT

May I, 1975, until 17h 16mln, May 8. The data presented here were

obtained with the Large Area Detectors (LAD) of HXX. The instrument package

has been described in detail elsewhere (Gursky, Schnopper and Parsignault,

1975).

RESULTS AND ANALYSIS

The source was observed on the average of 14 times/day, each observation

lasting between a few hundred to as long as 1500 seconds.

1. The November Observations

Figure 1 shows the light curve as seen by the HXX LAD differential

discriminators (1.3-7.1 keV). Most points correspond to a 256 second

integration time. However, if during a given extended observation no

statistical significant intensity variations were found, then the average

intensity for the entire observation is shown regardless of its duration,

and about 15 percent of the points in our light curve represent an integration
time of over 500 seconds.

The average intensity over the six days observation was 15.6 counts/sec
(corresponding to about 240 c/sec UHURU). The count rates varied between

7.2 c/sec and 24 c/sec. During that time, 3 dips in the X-ray intensity

were recorded on November 4, at ~ 18:00 UT and on November 5 at-8:00 UT

and 17:00 UT. Figure 2 shows tke intensity as a function of time during

the first 2 events. Each point represents the average count rate over 64

seconds. The November _4 event lasted from aboutla:30 UT to 23:40 UT

at the latest when the intensity was back at 18 c/sec. The time coverage

of the second dip started at ~ 6:00 UT on November 5 when the average

intensity was about 15 c/sec. At 7:47, the X-ray intensity was at 11.4 c/sac,

and it further decreased to 7.2 c/sec by 8:02. Thus, the intensity in

the I.3 - 7 keY decreased by 50 percent in about 100 minutes (Figure 2).

Statistically significant intensity fluctuations were seen during that

decrease. The third dip was observed primarily by the soft X-ray

experiment (SXX) on board ANS. It occurred at about 17:40 UT that same day

when the flux intensity was 17.8 c/sec and it decreased to 7. I c/sec by

17:45. The count rate returned to 18.2 c/sec at 17:52.

Between November 6 and November 9 the observations showed a rather

quiet period during which the maximum amplitude of the fluctuations were

within + 2.3 c/sec from the average intensity, except for one data point
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on November 7 at 14:28 UT, when the intensity reached 24 c/sec.

In order to further study the intensity dips observed in the present data,

we calculated the times for the inferior and superior conjunctions, starting

with the orbital parameters of the spectroscopic binary HDE226868, as

presented by Mason et a1.(1974): phase zero equal to ]392, 441, 163. 351

+0. 100, and the period of the system equal to 5. 60096 +0. 00038 days.

As such, we found the superior conjunction (_ = 0), t.e., the X-ray source

behind the BO star to have occurred on 4 November 1974 at 20.54 +3.10 UT.

This time coincided with one of the three large decreases

in intensity observed by our instruments. More precisely, these minima

occurred successively at _ = 0.00, +0.085, and 0.16 (+0. 023).

We have studied the energy spectrum of the X-ray emission during

these three dips. The data from the 15-channel PHA of HXX were fitted to

a power law spectrum, with an absorption cutoff. A fit to a thermal

bremsstrahlung spectrum gave systematically larger x 2. First, an "average"

energy spectrum was obtained by fitting the data of 16 different

observations when the intensity in the LAD discriminators were between

14.0- 17.0 c_sec.. The resulting fit gave an _= 0.58 +0.04

CKeV/'KeV-cm -sec), and an energy cutoff E a = I.01 +0_ II _eV, cqrresponding

to an hydrogen column density of 0.5 _+0..2x 1022 atoms/cm : (x. z = 17, for

12 degrees of freedom. ) The errors quotea correspona co X- t 4. o

which is equal to IJ deviation, for 12 degrees of freedom and 3 adjustable

parameters (Margon etal_ 1975). Subsequently, the different spectra

were compared to this "normal" spectrum.

We found that during these dips in intensity the spectrum became very hard

(a= 0. 0 +0.2, E = 0.8 _+0.7 keY) as compared t'o a normal spectrum. Most

of the observed decrease in the X-ray flux occurred below - 5 keV. Figure 3

shows two typical X-ray spectra of 64 second integration time each,

taken just before and in the middle of the second diD.

We further analyzed the dips in intensity in the following way: using our

spectrum program which fits a given type of spectrum to the PHA data,

and whose output are a spectral index and a cutoff energy, we first fixed

the equivalent hydrogen column density at 7 x 1021 atoms/cm 2, which is

the amount of interstellar matter from here to the object using Brown and

Gould abundancies (1970) (Gorenstein, 1975). Then, the spectrum program's

only output was the spectral index which we plotted as a function of

intensity. Figure 4 shows that there definitely exists a relation between

these two quantities. Conversely, if we held the energy index of the

spectrum fixed at its value for a "normal" spectrum, i.e., e = 0. 6, we found

a definite correlation between the intensity and the energy cutoff of the

spectrum (Figure 5).

Finally, observations made near the time of inferior conjunctions showed

that the X-ray spectrum was characterized by the parameters of a "normal"

spectrum. In the case of the high intensity point when I = 24.0 +2.0

(see Figure I), _ = 0.5 +0.20 and Ea = 1.0 keV.
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2. The May Observations

Figure 6 shows the X-ray light curve obtained during our 8 days of

observations, with the LAD. The data points correspond to between 256

and 640 seconds integration times. On May I, we observed a count rate

of 58 cts/sec, or about 4 times the average recorded in November, 1974.

With time, we found that the intensity increased further, to about 80 cts/sec.

From the same figure, we can devine some kind of an envelop which indicates

that the flux had reached its maximum around May 6-7. This deduction

is born out by ARIEL 5 observations (Sanford et al., 1975). During our

observations, we saw large intensity fluctuations of about 30%, on a

time scale of 80 sec. For example, the intensity varied on May 4,

from 138 _+4 to 107 +I cts/sec. No particular features around the time of

inferior or superior conjunctions were observed.

The X-ray continuum was well fitted by a power law spectrum, and the

characteristic parameters E a and a were rather independent of the intensity.

An average spectrum obtained by summing up observations when

70_ I_120 cts/sec. 2Yielded E= = 0.63 +0.17, corresponding to l.S x 1021

atom of hydrogen/cm , using Brown and Gould abundancies, (1970), and a

slope of a = 2.12 +(J. 09 keV. In Figure 7, a May observation of the X-ray

continuum is presented together with an observation made in November,

1974, for comparison. As can be seen from this figure, the intensity

increase s occured below Ii keV; namely a factor of about 20, for

E i 2 keV; ~ x 12 for 2_ E < 3 keV;- x 7 for 3_E_5 keY; and- x 3.5

for5< Ei IIkey

DISCUSSION AND CONCLUSIONS

The average intensity 15.6 c/sec of Cygnus X-I in the i. 3 - ? keY energy

band, as seen by ANS during 1974 November, was consistent with the low

intensity state of Cygnus X-l, as seen by UHURU, i.e., 240 c/sec

(Tananbaum et al., 1972).

Abrupt decreases in X-ray flux intensity, in the I - 7 keY energy band,

as observed in our November data, had previously been reported by other

authors (Li and Clark, 1974; Mason et al., 1974). The first authors

reported one such event (within 0.02 of the zero phase) out of three

Independent observations made near the zero phase of the binary. Mason

et al. made a total of seven such observations and observed four such

decreases in intensity which occurred between +0. 031 and -0. 060 of the

zero phase of the spectroscopic binary. However, one of these events was

not accompanied by any spectral hardening and therefore was not considered
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to besimilar to theotherthreeevents. Theyalsoconcludedfrom
their data that this type of intensity fluctuation was not random across

the whole phase, but was definitely correlated to the time of superior

conjunction. Thus, based on all the observations reported up to now,

there would seem that there is a 45 percent chance that such a dip will

occur and that it will occur near the time of zero phase of HDE226868.

However, this does not take into account the coverage of each of the

experiments: at least, Cygnus X-I is occulted by the Earth for about

40 minutes each 90-minute orbit. Thus, since a number of the recorded

events are shorter than 30 minutes, the present data are compatible

with these dips occurring during _orbital period of Cygnus X-I.

Furthermore, we see dips at superior conjunction and at about 0. $ and

0.9 days following this conjunction. Because of their limited observing time

in six of seven observing periods, COPERNICU& was flat'observing at si_ch

long times following superior conjunction (Mason et al., 1974). Thus,

they could not have seen the multiplicity of dips we report here. In one

other extended observation of Cygnus X-I (Li and Clark, 1974), there was

actually a 30 percent decrease in intensity observed dL dbuut 0.4 _ay_..... follo'+,'L'_g

superior conjunction which is consistent with our second dip, although

these authors dld not claim this event as siqnificant.

Our _one]llsinn therefore is that the absorption dip phenomenon in

Cygnus X-I is a more permanent and complex phenomenon than first believed.

Based on our data, it extends at least from about - 0 ° to 60 ° in the

orbital phase of the binary. The cause of these events is not apparent.

Since we see 3 such events within a single period, a partial eclipse by the

companion star can be ruled out. A gas stream, such as would be formed

by material flowing through the inner Lagrange point can also be ruled out

such as is seen in Hercules X-I (Giacconi, 1975). It is possible that we

are seeing the effect of a bow shock formed by the compact object, which

is the X-ray source, moving through the stellar wlnd of the primary.

As we have noted, and also as reported by Mason et al., Li and Clark,

the straight for_vard analysis of the X-ray spectrum during the "dips"

reveals a hardening of the spectrum as well as a deficiency of low energy

photons. Thus, even though we and others call these "absorption dips, "

they appear to be more complex than what would be expected simply by

absorption of the X-ray flux in cold gas. In actuality our data only

marginally support the possibility of a2spectral hardening since when we fix

the spectrum index a , the minimum X do not appreciably change. In the

case of a fixed a = 0.6, we find that the maximum equivalent hydrogen

column density, using Brown and Gould abundances (1970), would have been

about 5 +z_3x [022 atoms-cm -2.

Alternatively, we could think of these decreases in intensity as due not to

absorption effects but to changes to the source spectrum. More specifically,

if we though in terms of a 2 independent component X-ray spectrum, then the

observed changes in the X-ray spectrum could be due to a change in the

intensity of the soft component whose maximum is well below the threshold
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of sensitivity of our instrument. In such a case, only the "tail end"

of this spectrum would be visible in our detectors, and as its intensity

increased so would the power index of our composite spectrum (see

Figure 5).

Finally, turning our attention to the time of inferior conjunction

(96= 0.5), we found no excess in the X-ray flux about its average value of

15.5 _+0.4 c/sec. Previously, Sanford et al. (1974) had reported a cusp-

shaped distribution in their light curve of six days of observation of Cyg

X-l, wlth a maximum coinciding with the time of inferior conjunction.

Their peak to peak variation in the observed intensity corresponded to

~ 30 percent change in the X-ray flux. Our upper limit to a change in

average intensity, during the one day interval centered on the time of

inferior conjunction is about 5 percent. Earlier extended measurements

made by the UHURU satellite (Tananbaum et al., 1972) did not find such

a flux maximum at 9_= 0.5. Thus, based on our present data and on the

previous UHURU results, we feel certain that the phenomenon observed by

Sanford et al. is not a regular one.

The remarkable increase in the intensity of this source observed in

our May data had been first thought of as the mirror image of the April,

1971, downward transition (Tananbaum et al., 1972). This event had been

characterized by (i) a decrease in intensity from~1000 cts/sec to

~ 250 cts/sec (Uhuru); (2) an average X-ray spectrum whose index below

8 keV went from 3.1 to 0.45; and (3) most importantly it was accompanied

by the appearance of a radio source identified with the binary system

(Braes and Miley, 1971). Since that time, several observations both in

the X-ray and radio bands have shown the source to be remarkably stable.

That the May 1975 event is not reciprocal of the April 1971 event is evident

from the fact that, although the intensity reverted to about 1200-2000 cts/sec

(Uhuru), and the X-ray spectrum became much softer, the radio source

flux intensity increased, and showed large f/uc.Zu_[ons (HJellmlnq et al. 1975).

Furthermore, observations by COPERNICUS and ARIEL 5satellites _Sanfhrd

et al., 1975) have since shown that this high intensity State was,comparatlvely

short lived: by the end of May, the X-ray flux had more or less reverted

to its pre-flare value. Based on these brief arguments, it seems that

one should think of the May event as a transient event, rather than

the observation of the second "quantum" state for this object.

A preliminary detail analysis of the spectra in May seems to indicate that

there is a hard component present at certain times together wlth the low

energy soft component. This component is characterized by =_ 0.5.
Quantitively, it is seen from Figure 7, for example, that the X-ray spectrum

about ~ 11 keVis essentially the same as for the November observations.

A t present, we hope to refine this analysi& after our PHA has been

recalibrated, using our observations on the Crab Nebula of this past

September.
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HIGH RESOLUTION MEASUREMENTS OF CYG X-I FROM ROCKETS

R. E. Rothschild, E. A. Boldt, S. S. Holt, and

P. J. Serlemitsos

NASA/Goddard Space Flight Center

Greenbelt, Maryland 20771

ABSTRACT

Cyg X-I was observed on two occasions (Oct. 4, 1973 and

Oct. 3, 1974) by the Goddard X-ray rocket payload. This

payload consisted of two gas proportional counters (xenon-

methane with 710 cm 2 and argon-methane with 610 cm 2) using

the same 128 channel pulse height analyzer and having 320

_s temporal resolution on the 1973 flight and 160 _s resolu-

tion on the 1974 flight. During both flights bursts of i ms

duration were observed with very high statistical certainty.

To date all 13 of these bursts have be_n analyzed for

spectral and temporal character, and the results of thi_

analysis will be presented. The spectra of overall x-ray

emlssion trom both flights wiii also be presented, in a source

known for its variability it is remarkable that the spectra

taken one year apart are virtually identical.

The Goddard x-ray group has observed Cyg X-I on two occasions (Oct. 4,

1973 and Oct. 3, 1974) with our high resolution rocket payload. This

payload consists of two multilayer, multiwire gas proportional counters -

one containin_ xenon-methane and the other argon-methane giving an energy

range of 1.5 - 35 keV with 128 channel pulse height analysis. Our basic

tpmpoT_l resolution w_s 320 _s_cond_ on the 1973 flight and 160 _,.seconds

on the 1974 flight with some information on even finer resolution that

1'11 speak of later. The Figure I shows the counting rate versus time

for the 1973 flight. We pointed at Her X-I for about a minute then

scanned over to Cyg X-3 and pointed for about forty seconds. Finally

we scanned over to Cyg X-I and held until the doors closed exposing a

calibration source a minute later. The count rate profile is quite

chaotic. It resembles neither the regular pulsar profile of Her X-l nor

the constant rate profile of Cyg X-3. The mean rate of Cyg X-I varies on

most any time scale you wish to pick - be it milliseconds or months. It

is just this chaos when Fourier analyzed over the short duration rocket

observations that yielded a different periodicity for each exposure.

This mystery was explained by Terrell who showed that randomly occuring

overlapping pulses of a fraction of a second duration could replicate

this chaos. This "shot-noise" picture of the variable mean intensity seems

to work well in explaining the variability in the fraction of a second to

tens of seconds time scale. Before I get into the high resolution temporal

results, I would like to show the spectra of Cyg X-I from these two

exposures. The Figure 2 shows the photons per square centimeter second

keV for the 1973 exposure (Flight 13.010) and the 1974 expo_ire (26.037)

as a function of energy in keV. As you can see these two spectra, taken

a year apart yet at the same orbital phase (.17), are remarkably similar.
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They are identical except that the 1974 spectra has slightly harder

spectrum beyond i0 keV. The fit to these spectra yields a power law

of E-1"5s with an upper limit of _xlO el H atoms/cm _ of cold interstellar

absorption in the line of sight. We are not very sensitive to such

low amounts of absorption - hence we can only give an upper limit. It

is quite extraordinary for a source with such wild temporal behavior to

exhibit such stability in spectral shape over a year's time.

Now I would like to turn to the millisecond temporal behavior of this

source. During one of the periods of enhanced activity of the 1973

exposure three bursts of about one millisecond duration occurred within

20 mseconds. They are shown in Figure 3. This shows the count rate binned

every 640 _seconds for 80 mseconds. The three bursts are shaded. After

seeing these we searched the entire exposure to Cyg X-I for others. Five

more were found for a total of eight where a Poisson distribution of counts

would have predicted less than one. In order to confirm their existence

our 1974 exposure looked at Cyg X-I for 180 seconds. Five more bursts were

discovered where random statistics would have predicted less than one. In

a combined 230 seconds of expsoure we have seen 13 bursts where slightly

more than one would have been expected based on the count rate. We also

searched for counts beyond expectation in time bins down to 160 _s and up

to 5 mseconds and nothing was found beyond prediction that hadn't been

seen at one millisecond. Since burst determination depends on the local

mean rate, we are less sensitive to a given height burst during times of

enhanced activity.

One of the first questions that needs to be answered is whether or not

there is any structure within a burst. Scrutinizing individual bursts for

structure is useless due to the statistical uncertainties associated with

so few counts. Instead we created a mean burst profile by aligning the

centroids of each burst - this being the only reference a_ailable. Figure 4

shows _ ms of this composite profile centered on the bursts for the 197_

flight that had 160 _s resolution. The bins are 160 _s wide. No significant

structure is obvious. The dotted line shows the expected profile for a

one millisecond rectangular burst containing the same number of counts as

the composite. When twelve of the thirteen bursts are combined by aligning

the centroids with 320 _second resolution the result is shown in Figure 5.

Once again the dotted line is a one millisecond rectangle containing the

same number Of counts as the 12 bursts here. Once again, no hint of any

internal structure.

The 1974 flight also contained data that could provide information on internal

structure of bursts. This data was related to bunching of counts as close

together as 3 to 5 _seconds and 5 to 50 _seconds. Such bunching might then

be indicative of substructure within a burst, which in turn could in

theory yield values for the angular momentum of the collapsed object. This

data was compared with data taken using radioactive sources to simulate

the burst intensities. In all but one case the bursts showed no significant

internal structure down to 3-5 _s. But there was an exception. One burst,

the most intense of the 13, and in fact the hardest one spectrally, had

structure. There was definite evidence for bunching on the 3-5 _second

scale and a deficiency of counts in the 5 to 50 _s range. Due to the

anomalous nature of this burst, it was not included in the centroid-

aligned burst profile on the screen.
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We would like to know something of the energy spectrum of these bursts,

but as with the temporal data, statistics are quite poor. There are

only 53 pulse height values or counts in the 13 bursts. Building

a spectra from this would be plagued by statistical uncertainties to

say the least. We have calculated instead the mean observed energy

of each burst along with its formal uncertainty. We have also done

this for the overall emission. The result is that the observed mean

energy of the bursts is less than that of the overall emission when the

anomalous burst is not included in the sample, by 2½o. The mean observed

energy of the 8 bursts from the 1973 flight agrees with that of the 1974

flight within experimental uncertainty. The anomalous event is harder

than the overall emission, but its uncertainty is quite large and is

consistent with both the overall emission mean energy and that of the

other 12 bursts. Perhaps the bursts are appreciably softer than the

overall emission. It would be difficult for us to say since our detector

response tends to flatten the response of the mean energy observed to

various spectral indices.

Finally we can plot the mean burst energy versus burst intensity. This

is shown in Figure 6. The point at 18 counts with the asterick is our

anomalous event. It seems to be in another class from the others. Hence,

i_norin_ that point, we see no drastic variation in mean energy with

burst intensity.

In conclusion we have again shown that Cyg X-I is a source for everyone.

It exhibits much temporal structure, yet i£s spectrum did not from 1973

to 1974. It has millisecond bursts that show no internal structure, yet

its largest one did. If one uses the accretion disk calculations of

Shakura and Sunyaev and if one assumes a non-rotating compact object

f_oh,.,o_e_=oh_la m_o_ = m=== n_ 10 M_ f_ w_11 The emlss_on re_ion

for the bursts is less than lO0 km, thus ruling out white dwarfs. This

hole nature of Cyg X-I.
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THE TIME VARIABILITY OF CYGNUS X-I

M. C. Weisskopf

Columbia Astrophysics Laboratory

Departments of Astronomy and Physics

Columbia University

New York, New York 10027

ABSTRACT

The shot-noise character of the short-term time varia-

tions of Cyg X-I is reviewed. Evidence for the system-

atic variation of these parameters with the binary pe-

riod is presented.

INTRODUCTION

In this paper we shall present a tentative result concerning the long-term

variations of certain characteristics of the X-ray flux from Cyg X-I. Before

we do this, however, it will be useful to review the work we have done con-

cerning the short-term time variations of the flux from this object.

SHORT-TERMTIME VARIABILITY

In Figure 1 we show the mean autocorrelation function and corresponding power

density spectrum obtained from 71 U?_u_ observations of the _m_r_p w_th _hp

wide-field detector in 1972 January. These results have already appeared in

viewed here. The dashed lines in Figure 1 lndicate the measured values of

the functions shown, and the solid curves are the results corrected for the

bias introduced by the photon counting statistics as described in our paper.

The solid curves thus describe the time variability of the source itself.

Briefly, our results are as follows: (i) The average autocorrelation function

and its corresponding power density spectrum, shown in Figure i, are clearly

not consistent with a white-noise or periodically pulsed source. (2) Further-

more, the shape of the autocorrelation function, essentially a simple expon-

ential with an e folding time of 0.45 sec, is a classic example of what would

be produced by a randomly pulsed or "shot-noise" source with exponentially de-

caying shots. This apparent behavior would be a natural consequence of the

formation of local "hot" spots in an accretion disk or volume. (3) We find

no evidence for any energy dependence in the autocorrelation function or

power density spectrum. (4) We find a 100-percent correlation in time on the

scale of the time resolution of the experiment (0.2 sec) between events in

different energy bandwidths. This result would indicate that the hot spots

or flares that give rise to the low- and high-energy photons have a common

source. (5) When we compare our results with other similar analyses of data
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obtained since the spectral transition of 1971 March (and previous to the re-

cent variations reported this year), we find (once the effects of counting

statistics are taken into account) that the results are in agreement and in-

dicate that the seemingly random time variability is in fact a steady feature
of this source.

The numerical parameters, i.e., the rate of occurrence of the shots (20 sec -I)

and their decay time (0.5 sec), are constant over time scales of the order of

months. This fact would indicate that they are candidates for physical time

constants intrinsic to the source emission mechanisms. We note further that

these results are consistent with the qualitative features of most of the ac-

cretion disk models which invoke X-ray emission from two distinct regions:

an optically thin, inner region from which the high-energy flux emanates, and

an optically thick, outer region from which the lower-energy flux is emitted.

The time-variable component of the X-ray flux in the 2--16 keV bandwidth that

we have examined is clearly from a single region as the 100-percent cross

correlation indicates. This result is consistent with the hypothesis that

the relative intensities from the two regions shifted dramatically during the

spectral transition of 1971 March. The spectral slope of the post-transition

spectrum and the high-energy component of the pre-transition spectrum are

identical, which would further indicate that we are observing the flux from

the optically thin, inner region.

LONG-TERM TIME VARIABILITY

In addition to examining the short-term time variations of Cyg X-I, we have

also examined the long-term (~days) time variations of several parameters

over the 12 days spanned by the 71 observations. Of especial interest, of

course, are variations occurring at the 5.6-day binary period detected from

the optical counterpart. It is difficult to draw any definite conclusions

because the data span is limited to 12 days and fluctuations due to counting

statistics dominate each individual observation. Nevertheless, we have ex-

amined the long-term time variations of the following variables.

1. The Background

The sample spectrum of the background for each observation is shown in Fig-

ure 2. This spectrum is perfectly consistent with white noise and indicated

to us that, despite the nonuniform data sampling, the data were not subject

to gross systematic effects in the resulting power spectrum. This conclu-

sion was also confirmed by means of the Monte Carlo simulations with white-

noise sources.

2. The Mean Count Rate per Observation

The mean count rate per observation for these observations, corrected for the

spacecraft attitude, is shown in Figure 3. Even in this rather limited data

set, we see variations in flux by as much as a factor of four. The three er-

ror bars shown in the figure represent, respectively, the typical statistical
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uncertainty based on the flux variations in each observation (oi), the typi-

cal uncertainty in the intensity resulting from the uncertainty in the aspect

correction (02), and finally, the uncertainty based on the scatter of the

data about the mean (03). The fact that the latter is almost three times

larger than the former two indicates of course that these intensity varia-

tions are not consistent with those expected from a Polsson distribution.

This can be seen more clearly from the resulting power spectrum in Figure 4

where there are three peaks, each of probability of chance occurrence of 5 x

10 -3 or less. In fact, these results make extremely unlikely that the long-

term variations follow a white-noise process (with variance 032 ) as the prob-

ability of obtaining such peaks by chance is inordinately small. We are then

faced with the following possible conclusions: (a) the long-term variations

are consistent with those due to a white-noise source, and we happened to have

observed the highly improbable chance occurrence of three statistically sig-

nificant peaks in the power spectrum, or (b) in general, the source is a

white-noise source, and two or even all three of the peaks in the power spec-

trum are indicative of a periodic process. Unfortunately, we have no a p_-

o_ reason for singling out any of the periods of 3.6, 2.8, and 1.6 days for

any special significance. We do find it interesting, however, that the 2.8-

day variation, shown superimposed on the data in Figure 5, is in phase with

the 2.8-day variations observed in the intermediate band b-magnitude of the

visible companion HDE 226868 (as reported, e.g., by Lester, Nolt, and Rado-

stltz 1973). (c) The most reasonable interpretation, however, is that the

long-term variatlons are describable by some unidentified stochastic process.

In fact, one could speculate about a "superflare" process as indicated by

the high power at low frequencies.

3. The Shot Parameters

Clearly a very interesting set of variables is the rate of occurrence of the
_u^+_ /%_ _.A +_ A=o=,, +_m= (_. TTnfnrh,n_t_]v. the contribution of the

photon counting statistics to the fluctuations is quite large in these data

so that it is effectively impossible to make a meaningful measurement of

these quantities from a single observation of the source. Furthermore, in

order to remove the biasing effects due to counting statistics (as discussed

in Weisskopf, Kahn, and Sutherland 1975), we are forced to lump observations

together which, of course, implies a reduced sensitivity to long-term varia-

tions.

The resulting mean shot-model parameters as a function of phase for four

phase bins are shown in Figure 6. There is clearly a correlation between

the value of the parameters and binary phase outside the statistical varia-

tions, but there are not enough data to warrant an unambiguous selection of

this period other than on a p_ori grounds. This result is very tentative,

and we are concerned that the statistical biasing of counting statistics may

not have been removed because of the limited number of observations. Further-

more, it is difficult to understand on physical grounds how the flaring proc-

ess, if it is indeed the explanation for the short-term variations, is so

strongly affected by the binary motion.
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Figure 6. The shot decay (flare cooling) time and shot (flare) rate as a

function of binary phase for an assumed 5.6-day period.
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CYG X-I

Discussion

A. Bunner to R. Rothschild:

Do these rectangular one millisecond bursts have anything to do with the

shot noise bursts?

R. Rothschild:

We have been unable to find any direct evidence linking the millisecond

bursts to the shot pulses.
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OPTICAL OBSERVATIONS OF HDE226868 = CYGNUS X-l:

A REVIEW

C.T. BOLTON

David Dunlap Observatory

University of Toronto

Richmond Hill, Ontario

CANADA

I. INTRODUCTION

Because of the nature of this conference I have set

two tasks for myself. First, I want to summarize our present

state of knowledge of the binary system HDE226868 = Cygnus X-I.

Second, I wish to point out some deficiencies in the optical

observations that make interpretation of the system difficult

but which c_n be corrected. Because of the brief time allotted

for this rcvicw, it is necessarily little more than an annotated

bibliography. The listener (reader) should remember that I am

making no effort to be comprehensive, and thus both the choice

of papers and the annotations reflect my personal prejudices on

the subject.

I wish to address myself to three problems in this re-

view: I. Dimensions of the system

2. Nature of the secondary (x-ray source)

5. Properties of the mass transfer

The investigation of i. is almost solely dependent on optical

observations in this system. The study of the remaining points

depends on observations throughout the electromagnetic spectrum.
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Since 1 shall only discuss the optical observations, 1 will try to

indicate wherethe usefulness of these are limited and the x-ray

observations (in particular) provide useful data. Someof my re-

marksare madewith a fourth problem, the evolutionary history of

the binary system, in mind, but our understanding of this is so

poor at the present time that I do not wish to treat it explicitly

here.

II. DIMENSIONS OF THE SYSTEM

Dimensions in this discussion are taken to be the

semi-major axis and inclination of the relative orbit and the

masses, radii, luminosities, and effective temperatures of the

individual components.

Walborn [1973) has classified HDE226868 as 09.71ab

p vat. (cf. Figure I), where the p vat. refers to the variable

%4686 Hell emission. Smith, Margon, and Conti (1973) have con-

firmed this spectral type although they report small variations.

I am inclined to doubt the statistical significance of these

after tracing some of my plates. It should be noted that the

blue absorption spectrum of HDE226868 is completely normal (Wal-

born 1973). In particular, the carbon and nitrogen line strength

anomalies that are often found in other OB stars (Walborn 1975)

are not present. This probably tells us something about the

evolutionary status of the star, but we cannot interpret this

information until we understand the OBCN stars.

The spectral type implies an effective temperature of

30,000 K, log g = 3.3, and a bolometric correction of 2.9 mag.
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(Conti 1973, Code1974) with uncertainties of at least 10%in each.

The best available dynamical massesfor OBbinaries imply a mass

of 25-30Me for HDE226868(Stothers 1972) if it is "normal" and a

massas large as 45 _s is possible (Conti and Burnichon 1975).

The "normalcy" of the primary masshas been a controversial

question. Numerousinvestigators have pointed out the difficulties

involved in estimating massesfrom spectral types. These diffi-

culties can be overcome to some extent if a distance (luminosity)

estimate can be made independent of the spectral type. Bolton

(1972) summarized the available evidence on this point, and Margon,

Bowyer, and Stone (1973) and Bregman et al. (1973) have improved

the reddening distance determination. All of the evidence, in-

cluding interstellar reddening, polarization, inLwlstellaz ......

tion lines, and the spectral type are consistent with a distance

of at least 2 kpc. This argues for a "normal" mass, but the un-

certainties are such that, even at 2 kpc, a mass as low as 10_o

is possible (van den Heuvel and Ostriker 1973).

HDE226868 = Cygnus X-I is a binary system with a 5?6

period, and the remainder of our information comes from an analysis

of the velocity and light curves of the tidally distorted primary

star. Bolton (1975) has obtained a velocity curve and derived or-

bital elements from measurements of numerous high-dispersion spec-

trograms well-distributed in phase (Fig. 2). There is evidence

that a few absorption lines, such as H8 and HeI A16678 and 5875,

give spurious velocities because of mass motion in the system, but

the velocity curve based on the other available lines seems undis-

turbed. Both the velocity curve and the light curve (Hutchings 1974)

indicate that the orbit is slightly elliptical.
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The emission line velocity curves are muchmorepoorly

defined, but they indicate that the emission velocities vary approx-

imately in antiphase to the absorption line velocities. Bolton (1975)

has summarized the existing measurements of the Hell %4686 emission

line (cf. Figure 3), and Hutchings et al. {1973) have shown that

the emission velocities are 120 ° out of phase with the absorption

velocities after the emission profile is corrected for the presence

of the %4686 absorption line from HDE226868. They find that the

emission probably arises from a gas stream or hot spot near the

secondary and derive a mass ratio _i/_2 ! 2. Bisiacchi et al.

(1974) have obtained similar results from the same data. Only a

handful of velocities are available for the Ha emission line, whose

profile also has to be corrected for the intrinsic absorption line

from HDE226868. The Ha emission is very wide (Hutchings et al.

1974) and appears to arise in a disk around the unseen secondary.

The corrected lines give velocities approximately in antiphase to

the absorption velocities and indicate that _i/_2 < 2 (perhaps

Complete or nearly complete light curves by Lester,

Nolt, and Radostitz (1973), Walker and Quintanilla (1974), Hilditch

and Hill (1974), and Lyutyi, Sunyaev, and Cherepashchuk (1975)

show that HDE226868 is an ellipsoidal variable with a color indepen-

dent amplitude Am = 0.06 magnitudes (Fig. 4). Walker and Quintanilla

find that Am = 0.04 mag., but their observations are questionable

because they were obtained with a small (50 cm) telescope and an

unrefrigerated photomultiplier. The scatter in all of the light

curves is larger than the photon statistics, thereby indicating
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someintrinsic variability other than that due to the tidal distor-

tion. Nothing is knownabout this intrinsic variability other than

its existence, and I knowof no investigations of correlations

between it and other phenomena in the system. Figure 5 shows

that in spite of these intrinsic variations, the mean light curve

is quite stable. Archival photographs show that the behavior in

1949 was the same as at present (Herczeg and Sutton 1975).

The analyses of the optical data for dimensions are far

too numerous for me to give a complete listing. A subjective

list of the most important includes those by Avni and Bahcall (1975),

Bo!ton (1975), Hutchings (1974)_ and Lyutyi, Sunyaev, and Cherepash-

chuk C1975_. Although each investigation has made somewhat dif-

ferent assumptions and adopted slightly different approaches, their

final results are remarkably similar. Indeed, the insensitivity

of the results to the crudity or sophistication of the analysis is

Bolton (i975) is representative of results uu_,,_-_..... _ _-'_ othcrs for

_2/i, _7/2 , i, and RI/RRocH E. These results were obtained using the

Russell-Merrill rotating limb and gravity darkened ellipsoid model.

Calculations with a full Roche model tend to give larger inclinations,

but there is not universal agreement on this point. Kondo (1974)

has questioned whether the assumptions of the Roche model are valid

in x-ray binaries. Bolton (1975) has argued that they may be used

without significant error to analyze the HDE226868 system. In

particular, radiation pressure and non-synchronous rotation probably

have no effect on the mass determinations. However, the former

may be very important in determining the properties of the mass transfer.
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III. NATUREOFTHESECONDARY

Numerous models have been suggested for the binary

system (of. Bolton 1975 for a full discussion). The optical ob-

servations are relevant only to those models in which the secon-

dary is a "normal" star. There are two classes of these: i) a

single OB main-sequence star secondary in which the x-rays are

produced by processes involving magnetic field connections between

the primary and secondary (Bahcall, Rosenbluth, and Kulsrud 1973),

ii) a binary secondary star (ternary system) in which the secondary

consists of an OB main-sequence star with a neutron star in close

orbit about it (Bahcall et al. 1974, Fabian, Pringle and Whelan

1974). There is a second class of triple star models in which the

neutron star is in a wide orbit about the OB pair (Bahcall etal.

1974). This class is ruled out by the x-ray observations and is

not considered here.

Bolton (1975) has argued that models of class ii) are

ruled out by the "small" scatter in the HeII X4686 velocities.

Both he and Avni and Bahcall (1975) agree that the ellipsoidal light

curve is not inconsistent with the presence of a normal B main-

sequence star in the system. The light and velocity curves permit

secondaries between approximately B0V and B4V, but Avni and Bahcall

have shown that at least some of this range could be excluded by

spectrophotometry with a high signal to noise ratio. Figure 6

shows an attempt to do this by adding photographic spectra at the

same phase. The noise is about i%, and there is no indication of
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a normal secondary down to at least 3 magnitudes fainter than

HDE226868. This limits normal secondaries to spectral types of

B3V - B4V.

Zeeman measures of the HeI _6678 line (Borra 1975) ap-

pear torule out models of type i) with dipole fields, but more

complicated magnetic geometries are not excluded.

IV. MASS EXCHANGE

Our knowledge of the mass exchange rests on the behavior

of the optical emission lines and the x-ray absorption events

{Mason et al. 1974, Li and Clark 1974). In the previous section I

indicated the source regions for the emission features. Very little

is known about these features. Hutchings et al. (1973) have shown

that the equivalent width of the _4686 HeII line is phase dependent,

and Bolton has argued in support of this with additional data. How-

ever, the data ,,sma i_ _cattered over many cycles; Hutchings et al.

have 10 observations from 4 different cycles in a 16 cycle span.

Therefore it is impossible to differentiate random or non-random

long-term variations from phase dependent variations. Similar re-

marks apply to the Ha observations of Hutchings et al. (1974) and

Brucato and Zappala (1974). An additional complication in the latter

case is that no line profiles are given, only photographic reproduc-

tions of the plates. Evidence will be presented later in this meeting

that there are long-term changes in the strength of Ha and other

lines. Because of these we must regard all models for the mass ex-
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change that depend on this data with caution.

The x-ray absorption events give us information about

the size, density, and location of absorbing clouds in the system.

The question of location is key in differentiating different models

for the mass transfer. The location is determined from the timing

of the event relative to phases in the optical light or velocity

curves. This requires good values for both the epoch (of inferior

conjunction, say) and the period. The former is no special problem,

but there has been considerable confusion with resard to the latter.

Most of the recent spectroscopic (Mason et al. 1975, Brucato and

Zappala 1974) and photometric (Lyutyi, Sunyaev, and Cherepashchuk

1975) period determinations have clustered near 5_601. However,

Bolton (1975) has shown that periods near 5.6000 ± 0.0002 give a

better fit to the spectroscopic data, and when archival data is

included, the best period is 5.59982 ± 0.00004. Nevertheless,

several other periods in the range 5_597 to 59603 are possible.

Herczeg and Sutton have derived a light curve for HDE226868 from

photographic plates taken in 1949. When these are compared with

recent observations, a number of possible periods are found. The

only one of these in agreement with the possible spectroscopic periods

is $96000. It is interesting that if this period is used nearly all

of the published absorption events occurred before superior con-

junction of the x-ray source at a time when the line of sight would

he expected to pass through any gas stream. Presumably the absorbing
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material is very close to the x-ray source. Otherwise, the low

inclination of the system requires that the material lie far out

of the orbital plane.

The above discussion assumes that the period is constant.

This is quite reasonable as it is easy to show using standard

formulae for conservative mass exchange that a mass exchange rate

of 10 -7 We/Yr. will lead to a period change AP/P = 10 -l° This

is several orders of magnitude lower than could conceivably be

detected from either the velocity or light curves in a time inter-

val of 100 years. Put another way, the period change due to a mass

loss rate of 2 x 10 -2 _ �yr. might be detectable in the data
t@'"

obtained since 1971.

V. POLARIZATION

I have placed the polarization observations in a separate

section because it was not clear to me how these observations fit

into any picture of the system. Nolt et al. (1975) have reported

variations in the amount and position angle of the polarization in

the U band that are significant at the 5-4_ level. The variations

are synchronous with the 5q6 period. Nolt et al. argue that the

phasing of the variations is consistent with expectations for a

binary system seen at low inclination, but they offer no model for

the source (or sources) of the intrinsic polarization. Two groups

(Michalsky, Swedlund, and Stokes 1975, Severny and Kuvshinov 1975)
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have reported variable circular polarization from HDE226868.

Michalsky, Swedlund, and Stokes show that the variability mimics

the B light curve. The wavelength variation of the polarization

is consistent with that produced by interstellar dust. They have

suggested that the circular polarization could arise from the con-

version of linear polarization to circular polarization in the

interstellar medium or from polarized light produced in regions of

high magnetic field, but there appears to be severe difficulties

with either suggestion.

VI. DESIDERATA

There is no question that the most urgent need is for

an all out campaign on HDE226868 = Cygnus X-I to get full coverage

of the various phenomena in the system over several orbital cycles.

At present, essentially nothing can be said about the orbital varia-

tions of various phenomena because the density of observations is

not high enough to separate these variations from longer or shorter

time scale variations. Because of these problems it is impossible

to say how variations of one type (e.g. emission lines) relate to

variations of another type (e.g. x-ray intensity). It will be

impossible to progress any further unless a coordinated campaign to

monitor the spectrum and light variability and the x-ray intensity

over at least two orbital cycles is carried out. This will require

the dedication of as many large optical telescopes as possible at

474



all longitudes for the spectroscopic work. The Hell %4686,Ha,

and Hel %%6678,5875 lines should be monitored at resolutions of

i_ or better with the highest possible time resolution. At the

same time uvby photometry and polarization measures should also

be obtained, and the x-ray intensity monitored. It would be ex-

tremely useful to obtain vacuum UV observations, especially spec-

troscopic ones, but this may be difficult because of the strong

interstellar absorption towards HDE226868. The UV is perhaps the

one area other than'x-ray where useful isolated observations can

be obtained. Isolated optical observations may eventually become

more useful when (and if) a good picture of' the phase d_p_ndent

behavior of the _y_t_m a£ ul,_ _pu_h is _vail-_I¢ o_-..i ........

infrared and radio observations are desirable, but they are probably

not essential to obtain an understanding of the system.
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SHORTTIMETRANSIENTPERIODICITIESFROMCYGXl.

G. Auriemma, D. Cardini, E. Costa, F. Giovannelli, M. Ranieri

Laboratorio Di Astrofisica Spaziale, Cnr. Frascati (Italy).

Str_J4ARY

The temporal behavior of three new events of modulated optical emie

sion from Cyg Xl, detected in July this year, is presented.

TEXT

The first detection of a strong modulated optical emission with a p_e

I)
riod near 83 ms from Cyg XI was reported previously by our group .

..... _u_lysis _f thrc= n=r= cvcnts =f tranzi=nt_. thi_ _per we present .._

emission from the same source detected about one month later.

Short time periodicities in the optical band are investigated with the

experimental set up shown in Fig. I. Single photon pulses from the photomul-

tiplier are recorded on magnetic tape together with a very accurate I EHz

reference frequency.

During playback of the tape the reference signal gives a I ms timing

to a scaler interfaced with a small processor and the number of photon per

millisecond is recorded on a digital tape.

Comparison with the BIH time standard received at" 5 f.._zallows a con-

trol of time base accuracy and stability which result better than IO-_.

Periodicities are searched using stretches of data with a Fast Fourier

Transform computer program based on Cooley Tuckey algorithm. At the moment

the lenght of each data set is fixed to 458.752 s becouse of computer ti-

me limitations. In fact FFT analisys tim_ increases faster than the lenght

of _he data set.

From a carefull discussion of the various noise sources, reported else

where 2_ we deduce that this technique of data scan gives J,n the case of

%

Cyg _I (with q1_ cm telescope), a threshold of .15_ modulation for the dete
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ction of an event with 9_ statistical confidence.

I_ring July we carried out observations of Cyg XI with a total dura-

tion of about two hours spreaded over two nights with good weather condi-

tions. _ne scan of these observations revealed the presence of three events

of modulated emission occurring in a time span of less than one hour.

In Tab.l felt.rant parameter of the event (period of the modulation,

variation of the period during each event, duration and modulated fraction)

are compared with the same quantities o'served in the event of June.

_ne "light curve" and the evolution sho_m in Figures 2, 3 and 4 for

these events is qualitatively very similar to that of June, exception ma-

d_ for the duty cicle of the dips, which approaches to 50%.

These new observations of modulated emission from Cyg Xl confirm the

first detection and stress the peculiarity of this phenomenon.

First of all the shape of the light curve, that is probably distinct_

ve of a new mechanism of modulated emission, is entirely different from the

pulse production mechanism in pulsars. The variability of the period both

during each events (of the order of 10 -4 ) and between single events (of the

order of 10-3) strongly suggests that the observed periodicity does not c_

me from a system governed only by celestial mechanics.

In the quiet state of the source, the upper limit of the periodic co_

ponents in the optical emission is a factor ten below the level of the pe-

3)
riodic emission during an event, as confirmed by other surveys . _nis st_

tes probably that we observed really exceptional events, with a tipical lu-

minosity of the order of 10 35- 10 36 erg/s, not being the extreme members of

a more frequent, less powerfull, population of events.

A reanalysis of the settling of the event observed in June shows (Fig.5)

that the beginning of the modulated emission coincides very precisely _th

the brightening of the source. Time scale for this setting up is of the o_

der of few seconds.
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TABLE I

T_E

June 11.0611_! _W

July 18.0041 a UT

July 18.03674 "UT

Juno 18.o4854um

PERIOD P

(ms)

83.531 _ 0.0o8

83.714 _ 0.008

83.592 _ o.oo8

83.592 _ 0.008

aP#

1o-4

2"10-4

FILTER

Gray (x10)

R

B

Gray (x10)

DURATION

(minutes)

10

>10

>..6

_8.5

AL/L

3..5%

2.5%

3.7%

4.4
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DATA RECORDING

lCOmDal,s ,pi
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Fig,l. - The d_,ta a_zuisition sistemo Upper block dia_ra_ refers to

the phase in which _he cta_a is recoz_e_ on azzalog tape_ the

lower block diagr_ show_ _he playback and conversion to _he

cligi_al form.
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Fig. 3. - Time evolution of the event of July 18.O3674 UT. Plots

are the foldings over about 30 seconds of subsequent stret-

ches of data.
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The Optical Polarization of HDE 226868 (= Cyg XR-I)

J. F. Dolan, Warner _ Swasey Observatory, E. Cleveland, Ohio

Polarimetric observations of close binaries with orbit planes close to

the line of sight and early type primaries may reveal the presence of a black

hole secondary. The Einstein photometric effect (caused by the black hole acting

as a gravitational lens) will introduce a characteristic, time varying signature

upon the observed (interstellar) polarization of the primary by destroying the

quasi-circular sy_netry of the light distribution around the line of sight.

Since Thonson scattering and the gravitational deflection of light are both

wavelength independent, the effect is expected to be the same in all wavelength

regions.

Observations of HDE 226868, the optical counterpart of Cygp;Js XR-I, reveal

polarization variations in both magnitude and position angle which are correlated

p_ctro3cop" ,_ .... :_.J^ _ _L..... ..^ ..___ _................ I....

dependent, however, being greatest in the U, less in the B, and smallest in the

V wavelength band. Further, variability is present over much {if not all) of

the orbit, and, in the U band, the polarization shows significant changes over

periods of minutes (a fact which vitiates attempts to study this particular

type of vari_bi!ity by taking nightly averages of observation_s). The variability

may also not be strictly periodic with spectroscopic phase. For all these reasons,

the variability is probably caused by Rayleigh scattering of the primary's

light from recombining clumps of gas in the streams known to exist in the system.

Observations of X Persei show wavelength independent variability, hut not

enough observations have yet been made to allow further analysis.
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THE MAY 1975 TRANSIENT RADIO EVENT IN CYG X-I

R. M. HJellming .

National Radio Astronomy Observatory

Charlottesville, Virginia 22901

ABSTRACT

Radio observations of Cyg X-I (HDE 226868) taken

during the period May-June 1975 at 2695 and 8085 MHz

are presented and discussed in the context of both the

previous four years of data at these frequencies and

subsequent data for September-October 1975. The data

show that the radio event was a transient one with a

time scale of the order of a few to several weeks, and

that the observed radio decay was qualitatively similar

to the observed decay of the enhanced X-ray state

during this period.

The X-ray and radio source Cyg X-I (HDE 226868) has now shown two unique

types of correlation between its X-ray and radio behavior. The first

type wasthe sudden appearance (Hjellming and Wade 1971, Braes and Miley

1971) of a faint radio source on the position of the X-ray star HDE 226868

at the time of a major change in state in the X-ray source (Tanenbaum et.

al. 1972) in March 1971. The second type of correlation occured in May

1975 when both radio and X-ray source underwent a transient event -;ith a

time scale o;. -_,,,_l_,.v_o..__--" month. The purpose of this paper is to discuss

this transient radio event in the context of the data available both before

and after this period May-June 1975.

RADIO DATA AT 2695 AND 8085 MHZ

Portions of the 2695 and 8085 MHz data obtained with the NRAO interferometer

on the May 1975 radio event in Cyg X-I have been published by HJellming

et. al. 1975; however, subsequent data obtained through October 1975 more

clearly indicate the nature of the event to be a transient occurence both

preceded and followed by the "normal" radio behavior of Cyg X-I (HDE

226868) seen since March 1971.

The radio history of Cyg X-I between February 1971 and October 1975 at

frequencies of 2695 and 8085 MHz is shown in Figure I. The data up to and

including May 1975 has been previously discussed by Hjellming (1973) and

The National Radio Astronomy Observatory is operated

by Associated Universities, Inc., under contract with

the National Science Foundation.
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Hjellming et. al. 1975. This includes a plot of the X-ray data in the 2-6

keV range during the March 1971 transition (Tanenbaum et. al. 1972).

We see from Figure 1 that, after the initial appearance of the radio source

above detection limits between March 22 and March 31, 1971, the dominant

characteristic of the radio source has been the continuous presence of a

flat spectrum with both fluxes at, on the average, the 0.015 Jy level ( 1

Jy = 1.0xi0"*-26 W/cm**2/Hz). Except for occasional fluctuations about

the mean level, which usually were minor enhancements of the radio flux,

this mean level was not significantly exceeded until May 1975. The May 1975

radio observations of Cyg X-I were initiated after being informed by _.

Gursky that Cyg X-I had been caught in an enhanced X-ray state. Observa-

tion on May 9, 1975 showed that the radio source associated with Cyg X-I

was at levels of 0.035 Jy at 8085 MHz and 0.024 Jy at 2695 MHz. As shown

in Figure i, this was followed by a rapid decay to only slightly above

normal levels at 8085 MHz and a slower decay at 2695 MHz. Following a

sun=her period when the dual-frequency system was not available on the NRAO

interferometer, subsequent data were obtained in September-October 1975,

as shown in Figure i; these data showed the continued presence of the radio

source at normal or only slightly above normal flux levels.

CONCLUSIONS

Although a detailed comparison has not yet been made, it is clear that the

decay of the Cyg X-I radio source during May-June 1975 was qualitatively

similar to the decay seen at X-ray wavelengths during this period, particu-

larly in the Ariel V data in the 2-6 keV and 1.5-15 keV energy ranges

(Sanford et. el. 1975) following the initial rise of the X-ray source

beginning on roughly April 22, 1975 (Holt et. al. 1975). Therefore both

radio and X-ray data during this period show the enhancements in source

emission to be transient in nature, in contrast to the relatively long-

lived state transition that occured in March 1971.
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EFFECTS OF RADIATION PRESSURE ON THE

EQUIPOTENTIAL SURFACES IN X-RAY BINARIES

Yoji Kondo

NASA Johnson Space Center
Houston, Texas 77058

George E. McCluskey, Jr.
and

Samuel L. Gulden

Department of Mathematics
Lehigh University

Bethlehem, Pennsylvania 18015

ABSTRACT

Equipotential surfaces incorporating the effect of

radiation pressure have been computed for the X-ray
binaries Cen X-3, Cyg X-I = HDE 226868, Vela XR-I =

3U 0900-40 = HD 77581, and 3U !700-37 = HD 153919.

The topology of the equipotential surfaces is
_igni_i_an+Iv affected bv radiation pressure. In

particular, the so-called critical Roche (Jacobian)

lobes, the traditional figure 8's, do not exist.

The effects of these results on modeling X-ray
binaries is discussed.

INTRODUCTION

The opt|cal c_ponent !n mest X-ray b!naries is found to be an O-or

early B-type giant or supergiant. As discussed below, it is well known

that such stars are generally losing mass at a significant rate and that
it is probably radiation pressure which plays the dominant role in

causing this mass loss. An important factor in the theoretical and

observational study of close binaries is the existence of the so-called
critical Roche (or Jacobian) lobe which arises in the restricted three-

body problem. It is usually assumed a priori that when the more massive

star expands as it evolves and reaches its critical Roche lobe, it

begins to transfer mass thru the inner Lagrangian point, Lt, to the
companlon star, The duration and rate of mass flow are assumed to be

governed by the size and shape of the critical Roche lobe as well as by
the evolutionary expansion of the star. However, radiation pressure

can change the size and even the shape of the Roche lobe. Consequently,
when radiation pressure becomes significant, as it does for early-type

stars, its effects on the Roche equipotentiats must be taken into
account.
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We have computed the equipotential surfaces for four X-ray binarles
beth with and without radiation pressure. The calculations were

performed for Cen X-3, Cyg X-I, 3U 0900-40, and 3U 1700-37. These

blnaries were chosen as the early spectral types of the optical

components Indicated that the effects of radiation pressure
would be significant.

DISCUSSION

In this analysis, the effect of radiation pressure was computed

following the work by Schuerman (1972) in which electron scattering

is the principal mechanism for creating it.

Figures I through 8 demonstrate the differences in the equipotential

surfaces with and without radiation pressure. The parameter _ is
the relative mass of the X-ray star. The nh,,_^_l parameters adopted
for these caiculations are tabulated in Table I. We assume that

electron scattering dominates in hot stars and thus take

= 0.2 (I-X) _0.35, where X is the fractional hydrogen abundance
by number. Then:

L/Le
= 2.68 x 10 -5 _

®

where L is the luminosity and M the mass of the hot star.

Table 2 lists the radiation pressure parameter, a, which is the ratio
of the radiation pressure force to the gravitational force, and both

the coordinate of the internal Lagrangian (L I) point and the radius of
the primary's Roche lobe with and without radiation pressure for each

system.

The equipotentials incorporating the effects of radiation pressure

(Figures 2, 4, 6, and 8) show that the critical Roche surface,

figure "8", no longer closes behind the X-ray component. Matter

escaping through the LI point will have access to regions
surrounding the whole system rather than being limited to the
neighborhood of the X-ray star. This may alleviate some of the

difficulty in explaining why self-absorption or quenching of X-rays

does not occur in some X-ray binaries where the rate of mass loss by
the optical component is relatively high. Radiation pressure will

decrease the fraction of mass accreted by the X-ray star. It should
be noted that the gas streams found by Bessell, Vldal and Wickramasinghe

(1975) in the Vela XR-I system fit in nicely with the topology of the

Roche equipotentials when radiation pressure is present. As Table I

indicates, for the systems Cyg X-I and 3U 1700-37 where radiation
pressure is relatively large, the radius of the critical Roche Iobe

surrounding the optical component is decreased by 15-20%. Our results
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aaree with Bolton (1975) that the shape>of the primary's critical lobe
is not significantly changed unless _ _ 0.9. Consequently, use of the

size of the Roche lobe is hazardous if radiation pressure is not
_unted for while use of its shape is not unreasonable if _ _ 0.9.

Lucy and Solomon (!970) suggested that radiation pressure in the
resonance lines of abundant ions might give rise to a stellar wind

sufficient to explain ultraviolet observations of mass loss from OB

supergiants. They predicted mass loss rates of 10-8 - 10-9 solar
mass per year with outflow velocities of I000 - 2000 km s-I. The

observed mass loss rates are at least I00 times higher in many cases.

Recently, Castor, Abbott and Klein (1975) have found that by taking
subordinate lines into account, the effect of radiation pressure could

give rise to mass loss rates of 6 x 10-6 solar mass per year for an
05 star with a terminal outward velocity of 1500 km S-I. This is in

excellent agreement with values found by Morton (1967) from rocket spectra

of OB stars and from a Copernicus far-ultraviolet study of the 07f primary
in the system UW CMa (McCluskey, Kondo and Morton, 1975). Castor et al.

(!975) found that the apparent size of the hot star would be increased
_t,_r, in ,_,__,,_, ,.,__._.. ....by i0-30% due Io electron ...... ng ......... ope of _ _+=- T_.,

found that the material is accelerated rapidly by radiation pressure.

The vcloclty is cssent!a!!y zero at the photosphere _nd in_r_q_m tO
the escape velocity at a distance of 0.1-0.2 stellar radius above the

photosphere.

These results imply that at a small distance above the photosphere,

may be equal to unity or even somewhat larger. Thus, the effective
gravity of the primary, In regard to its gravitational attraction on gas

particles, becomes zero or even negative. The critical Roche lobe

surround!rig The primary m,lmf in fact coincide es_ei_tiaily wit,h the

photosphere where 6 becomes small. No closed lobes exist above the
photosphere and no closed lobes surround the system. Only in the

neighborhood of the X-ray component do closed lobes exist: these

surround this component.

Consequently, the Roche equipotentials tell us nothing about the size
of the optical component if it is of early spectral type and high

luminosity. These surfaces also tell us nothing about the shape of
the hot star. The critical Roche lobe surrounding this star is

determined by the way in which the radiation pressure determines its

effective gravity at each point. We would have to know _ as a

function of position in order to calculate equipotentials. In short,
as 6 approaches or exceeds unity, the usual concept and usefulness

of the Roche equipotentials vanish.

Observational work on several X-ray binaries agrees qualitatively with

the theoretical stellar wind calculations. The optical component,

HD 153919, in the X-ray binary 3U 1700-37 is an 07f star. Conti and

Cowley (1975) discussed the emission line spectrum of this system and

found an outwardly accelerating envelope surrounding the Of star,
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expanding at 300-1600 km s-I. Hensberge (1974) estimates the mass
loss rate as 2 x 10-6 solar mass per year.

Vidal et al. (1974) found P Cyg profiles for HB

the spectrum of the optical component in Cen X-3.
of 800 km s-I were found.

and He II X4686 in

Expansion velocities

One must conclude that for any close binary in which one (or both)
component is an early-type giant, supergiant or Of star, the

radiation pressure is the dominant effect in causing mass loss and
the Roche lobe probably plays a limited role at best. For stars

not quite so luminous and with weaker stellar winds, the role of the

Roche lobe becomes more important and for stars later than BO or BI,
with the possible exception of the most luminous supergiants_ radiation

pressure becomes negligible, and if the requirements of the restricted

three-body problem are met (Kondo 1974), the Roche surfaces may yield
important information about the system.

In order to investigate quantitatively the effects of radiation pressure,
calculations of particle trajectories are current!y being carried out

both with and without radiation pressure. The computations were performed

and figures plotted using a program written in Pascal 6000 on the
CDC 6400 at the Lehigh University Computing Center.
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Binary

Table I

Adopted Parameters

SpTopt L°g_L t M°PtM MXM

Cen X-3

Cyg X-I
3U 09OO-4O

3U 1700-37

08 III-V 5.25 20 2.7

09.7 lab 5.70 22 12.8
BO.5 Ib 5.16 23 2.0

07 f 5.78 30 3.0

Binary

Table 2

Radiation Pressure t Coordinates of the

Internal Laqrangian (L I) Point and

_ Xl(O) Xl(6) rl(O) rl(_)

Cen X-3 0. II 0.24 -0.590 -0.554 0.583 0.533

Cyg X-I 0.39 0.61 -0.156 -0.044 0.417 0.317
3U 0900-40 0.08 0.17 -0.648 -0.624 0.600 0.590

3U 1700-37 0.09 0.54 -0.628 -0.522 0.592 0.500
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THELONG TERM VARIABILITY OF HDE 226868 = CYGNUS X-I

WM. LILLER

Center for Astrophysics

Harvard College Observatory and

Smithsonian Astrophysical Observatory

Cambridge, MA

ABSTRACT

Investigation of blue-sensitive photographs of

in brightness since the beginning of the century nor any

abrupt intensity changes similar to what has been observed at

X-ray and radio frequencies. From the double sinusoidal

fluctuation with 5.6 day period, an attempt is made to derive a

more precise value for the orbital period, but problems are

encountered and discussed. There exists evidence that the

amplitude of the orbital fluctuations is increasing slowly with

time.
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While Cygnus X-i has undergone a number of rapid changes

in X-ray and radio brightness, no well-substantiated variations

have occurred at optical frequencies except for the doubly-

sinusoidal fluctuation of %0.07 mag with a 5.6 day period due

to the ellipsoidal figure of the supergiant primary.

We have made a photometric study of the blue sensitive

photographs dating back to 1890 in the collection of the Harvard

Observatory in order to investigate the possibility of long-

term changes or occasional abrupt changes in the brightness of

the optical source, HDE 226868. Dr. Arlo Landolt, who had found

some evidence for a brightness change since 1960 (Landolt 1975),

kindly supplied us with UBV magnitudes determined photoelectrically

for a number of nearby stars. All of our measurements were made

from Harvard plates with a digitized variable iris photometer.

No detectable long-term change in brightness (±0.04 mag)

occurred during the interval 1928 to 1952. Over this period of

time, Harvard operated several sky patrol cameras, the one

producing plates of the highest quality having an f/5.6 Ross lens

with a diameter of 10 cm. Figure 1 shows the annual means of

the B magnitudes of HDE 226868 derived from plates taken with

this camera. The full length of the vertical error bars are

twice the calculated mean error of the mean values. As can be

seen, the unweighted average of the annual means, B = 9.746 ± 0.011

(standard error) falls within the error bars of 17 of the 22

yearly means indicating no longuterm changes. We calculate that
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the standard deviation of a single year's value is ±0.04 mag

and suggest this value as the upper limit of variability.

Around the beginning o'f the century, two series of blue

plates were taken of the region with a 20-cm refractor. Thirty

nine plates were exposed in 1903 yielding an average B magnitude

of 9.808 ± 0.004 (standard error) and 8 plates in 1890 gave

B = 9.801 ± 0.010. Therefore, we conclude that the optical

counterpart of Cygnus X-I has shown no evidence of variability

since 1890 to a precision of ± 0.06 mag.

The brightest and faintest magnitudes recorded for

HDE 226868 were B = 9 49 !q J1_ly !99R _n_ I__14 _n October 1929.

Both values fall within the expected spread of magnitudes

derived from old plates. Hence, we have no evidence for any

abrupt changes in brightness.

The 5.6 day double sine curve fluctuation in brightness,

which in 1974 showed a full amplitude in B of 0.07 mag (Lester,

et al., 1975), can be seen clearly in the 1903 data but only

marginally in 148 magnitudes accumulated in 1944 and 1945.

(See Figure 2.) The primary reason for this difference in

visibility is presumably the quality of the plates: The early

photographs were taken with slow, fine grain emulsions and a

20-cm refractor; the 1944-1945 plates were from the patrol series

made with a 10-cm camera and coarser grain emulsions.

From a comparison of the 1903 and 1944-1945 light curves

A

with that published by Lester et al. (1975), one should be able

to derive unambiguously the orbital period of the Cyg X-1
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system, assuming that there has been no change of period in the

last 72 years nor abrupt phase shift as suggested tentatively

by Walker (1975). Figure 3, which displays the possible periods

derived from our data together with periods published by others,

shows that our data indicate most strongly that P = 5.60305

± 0.00015 days with a second preference for P = 5.59992 ± 0.00020

days. Possibly the 1944-1945 data are misleading and should be

ignored; possibly a period change or phase shift has occurred.

As soon as other investigators can come to better agreement on

the best period, the 1974-1903 baseline should yield a precise

period or else make us look for the other effects suggested.

An interesting preliminary result which we hope to

investigate more thoroughly is the variation of the full amplitude

of the 5.6 day light variations. As Table 1 shows, there appears

to be a small increase in amplitude from 1903 to the present.

TABLE 1

Full Amplitudes of the 5.6 day Light Fluctuations

of HDE 226868 = Cyg X-I

Year _B m.e.

1903 0.035 0.010

1944-45 0.052 0.025

1974 0.067 0.008 (est)
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The explanation for this increase might be that the X-ray heating

of the luminous primary is decreasing due to decreased mass-

accretion rates. Thus, the side of the supergiant facing the

collapsed star is less luminous, and in 1974, more of the light

fluctuations were due to the tidal distortion of the primary.

Any heating of the front face of the supergiant would tend to

decrease the fluctuations.

The author thanks the National Science Foundation who

supported this research, Lola J. Eachus, William Forman and :

Christine Jones Forman, who made many of the measurements, and

Drs. Arlo Landolt and C. T. Bolton for suggesting that this

investigation be undertaken.
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emulsion).
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Blue Band PhOtometr_ Of cy_nus X-I

E. N. Walker

Royal Greenwich Observatory,

Herstmonceux Castle,

Hailsham,

Sussex,

England.

Abstract

The results of blue band photometry of HDE 226868 in the years 1972-3-

4 and provisional results for 1975 are presented. A mean light curve is

obtained from the first three years observations which is based on 192

nights observations. Intercomparison of the results from the different

years shows that the light curve is not constant.

Introduct ion

In a series of papers Walker (1972), Walker and Rolland (1974), Walker,

Rolland and Buck (submitted to MNRAS) we have presented the results of

monitoring the star HDE 226868 for 29 nights in 1972, 55 nights in 1973 and

108 nights in 1974. We have obtained 72 nights observations at the time of

wgiting in 1975 and expect to obtain approximately 30 more before the end of

+_ IQ_ season= Cm_ _esuits for 1975 -_-"_ _-^_ _ _ _g=_A_A as

provisional. The general features of our light curves, which show two

maxima and minima per orbital period, are in general agreement with those

produced by other authors, Cherepashchuk et. al. (1972), Lester et. al.

(1973) and Lyutyi et. al. (1974). However, as pointed out by Avni and

Bahcall (1975), the present quality of the light curve is inadequate to

differentiate between various models of the binary system. We present here

the most detailed light curve yet obtained together with some conclusions to

be drawn from the results. The reader is referred to the series of papers

either published or submitted to Monthly Notices of the Royal Astronomical

Society for detailed listing of the observations and for a more detailed

description and discussion of the results.

The Period and Mean Light Curve

The best fit period to our 1972-3 and 4 observations is 5.6026 days.

However using this period leads to a phase shift of _ 6% for the 1975 obser-

vations. Following the results presented by Bolton and Liller at the

conference who respectively have obtained periods of 5.59972 days and

5.60118 days we have reexamined our results. A period as short as Bolton's

will _emove the phase discrepancy between the 1975 results and the mean

light curve but will cause the 1972 results, which are based on the smallest

number of nights and hence the least well determined, to be very discrepant.

Pending completion of the 1975 observations and reanalysis of all the data
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we will present here results based on the period which fits our earlier

results best. We would note that of the 192 nights results used to obtain

this mean light curve 108 (_ 56%) wEr_ obtained in one year only while

another 55 (_ 29%) were obtained only one year earlier. If the period

5.59972 days is correct, rather than 5.5026 days, this will lead to a phase

discrepancy of only 3.7% between these two sets of data which should have a

very small effect upon the mean light curve obtained.

Figure 1 shows the 192 nights results. The mean line drawn through

these was obtained by taking a running median value for each 0.i of the

total period. The formal error of this curve as estimated from the scatter

of points is everywhere better than 0.002 mh. Points to note particularly

are the very different shapes of the minima_ with that at ¢ _ 0.5 showing a

standstill for O.12P prior to the final drop to the minimum. Following this

minimum the rise to maximum light occurs in only O.08P. Both the standstill

in the light curve and the rapid recovery of brightness are reminiscent of

eclipse phenomena.

Intercomparison of the mean liiht curves from different years

In Figure 2 we show the mean light curves for 1972, 3 and 4 where the

solid lines were obtained as described above for the three-year mean curve.

In Figure 3 we show these three light curves superimposed, while in the

lower part of Figure 3 we show the differences between the different light

curves. The basic features of the light curve, i.e. the different minima

and the rapid rise to maximum light, seem to have been present for the three

years. However there has been a progressive brightening of the star which

has occured at about phase 0.5 and not at phase O. This could be explained

by increased heating of the primary by the secondary having taken place over

the three years. A detailed analysis of the data shows that this effect

occured until mid 1974 after which there has been a progressive decline in

this excess luminosity about phase 0.5.

In Figure 4 we show a provisional mean light curve for 1975 (based on

the first 64 nights results) superimposed on top of the three year mean

curve. Even ignoring the phase shift, which might be a product of an in-

correct period, it can be seen that there has been a major change in the

light curve from previous years. The minimum near phase 0 now has a

completely different character from that seen previously while the rapid

rise in lisnt near ¢ = 0.6 now has much more the character of that near

¢ = 0.I. Pending completion of the 1975 observations no conclusions can be

drawn from this apparent change but if it is real, and observations obtained

between producing the diagram and the time of writing suggest that it is,

then perhaps this is a result of the x-ray and radio flare that occured in

May 1975.

Fourier Analysis of the data

All the 1972-3 and 4 data have been subject to several Fourier analyses,

both of all data and various subsets of it. This was to try to discover if

variations with anything other than the orbital period were taking place,

perhaps due to a third body in the system. All power spectra are dominated

by power with half the orbital period, due to the double variation in each

orbit. Removing this frequency and all its harmonics leaves no power at any

frequency greater than 1%. which is about the noise level, between infinite

period and half a day. The noise level at _ 1% is some three times larger

than that in one of the comparison stars, BD+34°3816, which is 0.9 m b fainter
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than HDE 226868 suggesting that real noise at about the 1% level is being

generated by this star, At about the 1% level there are four system of

sp_kes in the power spectrum that could possibly be associated with real

events. The periods are 1.04, 1.2, 2.94 or 2.18 days or their nearest

aliases (due to the one day spacing of the observations). It will require

more observations to decide on the reality of these variations.

Conclusions

A mean blue light curve has been presented that everywhere has a formal

accuracy of better than 0.2% which should enable tighter limits to be put on

possible models for the Cygnus X-I binary system. The blue light curve seems

not to be constant on a time scale of years and models must take this into

account. There have been no periodic variations in light with other than the

orbital period and with amplitude greater than 1% and with periods between

infinity and half a day during the first three years discussed here.

It is a pleasure to thank Angel Rolland Quintanilla of Granada Univer-

sity, Spain who made 27% of the observations discussed here and Mr Colin

Buck and Dr Paul Murdln of the R.G.O. who produced the Fourier analysis

program used here.

Avni, Y, and Bahcall, J. N. 1975. Ap. J., 197, 675.

Cherepashchuk, A. M., Lyutyi, V. M. and Sunyaev, R. A., 1972. Soviet Astron.

A. J., 17, No. i.

Lester, D. F., Nolt, I. G. and Radostitz, J. V., 1973. Nature, 241, 125.

Lyutyi, V. M., Sunyaev, R. A. and Cherepashchuk, A. M., 1974. Astron. Zh.

51, i150.

Wa]ke_. E. N.= 1972. Mort.Not R. ast_. S.c., _n eD

Walker, E. No, and Rolland Q. A., 1974. Mon. Not. R. astr. Soo., 169, 247.

523



524

_o

N

o

0

>

_3
0

co

c4

cn

0

,.c:

E

4-1

o
,1::I

,..-I



I'lO!

DoOIO

1.710

1"120

1"141

l'llO

1"111

1.144

I'II+

I.II,

1"TOO

. ,1. , .

CYGNUS X - I

• t172

tlTI

i i i , I i i i i i i i i i i

111 Iq

J

• o •

%

PHASE p.. sd.6021

, , , o, '! .z, .! .+, .! ._ '7 "f '? ,o ,

Figure 2 shows individual mean curves for the years 1972, 1973 and 197_.

525



m b

9"600

9"620

9.040

9.600

0.080

CYG NUS X- 1

/t074

,, -k_.. I.; \ \ I iF -',. ,,k_._ 1,107,

',,_. ',,.;,,,...• 1072

"- _ m ,v.. e

\.-"./'-.: ' "---,', L._ .....I
\ /

| ! I a n I | i ! I I ! | |

+ -020

4-.010

0

÷ .01@

0

. _ 1074-1072

• j"

1073- 1072

1074 -1075

0 .1 -2 -3 .4 .S .0 .7 .0 .9 0
i i i i i i i i I i l

Figure 3. In the upper part we show the mean light curves for 1972, 3 and 4

superimposed while in the lower part we show the differences between

the individual light curves.

526



0

O

'N

%% %_,

/ i

%%

II_''_" _ ,,,.. __

I I I I I I

0

4J

_o

0

E
°rl

_o _
_.,-I
0

0
• el ,--I
m ,"-4

0 _
¢t 0

>

0 0

m _
m

Ill

527



INTERSTELLAR REDDENING ESTIMATE OF CYGNUS X-I FROM THE ULTRAVIOLET

Chi-Chao Wu, R. J. van Duinen

Kapteyn Astronomical Institute, Dept. of Space Research

University of Groningen

G. Hammerschlag-Hensberge

-Astronomical Institute, University of Amsterdam

ABSTRACT

Observations obtained by the University of Groningen experiment on board the

Astronomical Netherlands Satellite (ANS) are used in the study of interstellar

reddening towards the HDE 226868-Cygnus X-I system. The ultraviolet instrument

consists of a 22 cm aperture Cassegrain telescope and a five-channel spectro-

photometer with central wavelengths at 1550, 1800, 2200, 2500 and 3300 angst-

roms. The response function of each channel is almost rectangular with full

widths ranging from 100 to 200 angstroms. The field of view is 2.5x2.5 arc

minutes with pointing accuracy of 0.5 arc minute.

In order to establish the interstellar reddening law for the region ot the s_y

around Cyg-l, extinction curves for 20 stars within a circle of radius of

about I0 degrees are derived. The result is: E(%-V)/E(B-V)=5.28(±0.07),

4.85(±0.06), 6.78(±0.I0), 4.10(±0.06) and 1.99(±0.04) respectively for %=1550,

1800, 2200, 2500 and 3300 angstroms, the values inside the parentheses are

probable errors for a given set of 20 data points. As it is well known, the

extinction curve is strongly peaked at 2200 angstroms. Since the intrinsic

.... +_i ....... A_=+_,,_, _ _Iv tvne stars is smooth between 1800 and

2500 angstroms, we can estimate the amount of reddening without haviLlg Lo know

the precise intrinsic colors of the object being studied. By adopting R=3.1,

then A(E)/E(B-V)=3.1+{E(%-V)/E(B-V)}, where A(%) is the total extinction at

wavelength %. E(B-V) can be estimated by trial and error until a smooth

energy distribution is obtained for the program star. Since E(2200-V)/E(B-V)

is 6.8, this method is very sensitive in estimating E(B-V). Small over or

under correction of reddening will give a hump or a dip respectively in the

resulting spectrum.

The observed flux for the pointing centered at HDE 226868 (at orbital phase of

0.27) was first corrected for the presence of BD+34 3816 in the field of view,

and then the dereddening process similar to that described above was applied.

Our best estimate is E(B-V)=I.02. Due to the facts that HDE 226868 is faint

(large error bars) and highly reddened (large reddening correction), a smooth

de-reddened spectrum cannot realistically be expected, rather, E(B-V)=I.02 is

the value which allows the resulting energy distribution of HDE 226868 to lie

within the range set by a 09 Ib and a B0 Ib star. The ground-based value of

E(B-V)=I.12 gives a strong hump at 2200 angstroms, indicating that it is too

high. This investigation provides an independent, and probably more accurate

estimate of the interstellar reddening to Cyg X-1. Combined with the E(B-V)

vs distance relationship established from UBV photometry, the system is at 2.5

kpc or more. Therefore, in agreement with ground-based studies carried out by

other investigators, HDE 226868 is a luminous and massive star, and Cyg X-I is

a probable candidate for a black hole.
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HDE 226868 (CYG X-I)

Discussion

P° Murdin to C. T. Bolton:

Jay once fitted a spectroscopic binary orbit, quite successfully, to radial

velocities of the pulsating giant, Mira. My point is that fitting a

Keplerian orbit to a radial velocity cycle is relatively easy and the fact

that a "good" orbit can be fitted to the HD226868 radial velocities does

not, of itself, show that the velocities actually represent the orbit of

the star. Although, personally, I agree it probably does--but that's just

a feeling°
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3U 1700-37 = HD 153919: Review

J.B. Hutchings

Dominion Astrophysical Observatory

Abstract. X-rayjspectroscoplc, and photometric data for the source are reviewed

briefly. A description is given of the generally accepted model and its

important parameters derived. Some points of controversy and difficulty are

discussed.

Introduction

The X-ray source 3U 1700-37 is moderately strong (_ i00 Uhuru counts) and

shows a long eclipse, with a period of 3.412 days (Jones et al. 1973). In

addition, the X-rays are attenuated near 0.5 phase, and show a very wide gradual

decrease on either side of the total eclipse. The low-energy cutoff is the

strongest of all the X-ray binaries. These characteristics are all qualitatively

compatible with the optical star's, which represent an extreme in several ways:

1) the primary is an extreme Of star with large mass outflow through a spherically

symmetric stellar wind (_utchings i_74a)_ 2) iL i_ Lh= ],otte_t v_= 0_-'_X rny

binary primaries (with possible exception of Cen X-3); 3) the mass ratio is

very high and the relative separation of the stars is low.

Spectroscopy

Spectroscopic analyses have been made by several workers (Walker 1973,

Hutchings e_ al. 1973, Hen_beL_e =L °I. _,_, ........................ , .........

1974a, Conti and Cowley 1975), and all agree on these essential points. It is

clear that in several ways the effect of the compact star on the primary is

smaller than in the other systems. The stellar wind is basically unaffected by

the companion. Indeed, the source is effectively buried in the wind and it

seems very unlikely that an accretion disk can be formed. No sign is seen of

emission from such a disk -- at least in comparison with the strong emission

lines which come from the envelope as a whole. It has been claimed (Dachs and

Schober 1974, Dachs 1975) that the He emission varies in a phase dependent way,

and this may be ascribed to a tidal modulation of the stellar wind, or X-ray

absorption in the envelope near to the secondary. However, these results are

not confirmed by Conti and Cowley (1975) and seem to me to be by no means

certain.

The primary shows clear evidence of an outwardly accelerating envelope,

similar to the Of star HD 152408 (Hutcbings 1968). Table i shows how the

mean velocity varies with excitation (and hence, in general, with distance

from the photosphere). We also note that K decreases as we move away from

the photosphere -- indicating that viscous or damping forces operate in the

envelope. An interesting exception to the rule is C IV which has an apparently

hlgh recession velocity while having the expected high K for its (large)

excitation. Possibly blending or an error in the line wavelengths could account

for it, but no specific suggestions are obvious. It appears that K for the
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underlying star is about 20 km/sec. The high negative value for Vo, even for

the highest excitation lines is typical of this type of star (HD 108, 148937,

152408) and either they are all high velocity stars (all at _ -50 km/sec_)

or the lowest layers of the envelope are themselves expanding at this rate.

Mass loss rates have been estimated at 2 x 10 -6 M@/yr by Hensberge(1974).

This is based on the wrong fitting of the He I 4471 profile and I must presently

prefer my own estimate(Hutchings 1976) based on a comparative study of mass-

loss indicators, of 1.5 x i0 -5 Mo/year.

Recession velocities at the distance of the secondary (_ 1.5 R*) are

probably about i00 km/sec. During phases just beyond 0.5, high velocity

absorption components (-600 km/sec) are seen in He 1%5875, the scatter in RV's

increases, and emission in some lines tends to increase. These effects are all

probably associated with the passage of the compact body through the moving

outer envelope of the primary (see fig. i). Finally, there are very broad

emission features at _%4100 and 4650, similar to those in HD 152408, which may

arise in a very extended outer region, where velocities are some thousands of

km/sec. This reglon, however, is probably little affected by X-radiation. The

star is not known to be a radio emitter.

Photometr[

The photometric behaviour shows a variation of 0_06 with a large scatter

(eg. Penny et al. 1973). Minima are seen at phases 0.i and 0.5 from X-ray

minimum. The 0_5 minimum may be ascribable to gravitational darkening of the

primary, but the cause of the minimum at 0_] rathpr than 0_0 is not clear. A

moderate eccentricity in the orbit could account for it, but would require many

noticeable consequences (immersion of compact body in the primary photosphere,

large changes in stellar wind behaviour, Roche lobe overflow, precession of

orbit) and must probably be discounted. Closer study of the photometric

behaviour is badly needed.

If the 0_06 amplitude is ascribed to gravity darkening then an estimate can

be made of the mass ratio (Hutchings 1974b). We must note an important new

datum: the X-ray eclipse duration has been revised down to ± 44 ° by Ariel data,

from the ± 55 ° deduced by the Uhuru workers (Fermi Summer School 1975). The

reason is apparently increased sensitivity and the gradual nature of the eclipse

cutoff. This relieves the difficulties noted e.g. by Sofia and Wilson (1975)

of the primary apparently overflowing its Roche lobe and/or requiring an

unrealistically high mass-ratio. Analysis of the light curve, eclipse duration.

and spectroscopic mass functions (see eg. Hutchings 1975) yields masses of

M 1 = 27, M 2 = 1.3, q = 20 ± 3 and i = 90 ° ± 5 ° . Table 2 shows my presently

preferred parameters for the system. Reasonable values for the radius of an

07f supergiant (_ 20 R@) are fully compatible with these figures, and suggest

that Vro t _ 300 km/sec.

Rotation and Summar I

This brings us to a second point of controversy. I have estimated Vro t

from emission line widths, incorporating an expansion of _ I00 km/sec, of

300 km/sec. The absorption ]ine widths, however, give Vro t _ 140 km/sec and

532



someworkers(Wolff andMorrison1974,ContiandCowley1975)haveplacedmore
relianceon this number.If the absorptionis formedthroughanextended
region,or in a regionsignificantly removedfromthephotosphere,then
projectioneffects will causeanunderestimateof Vrot. Thefactor of twoin
this casewill occurfor lines formedout to 1.3R, (or in a thin layer closer
thanthis) if angularmomentumis conservedin the envelope.Whetheryou
believethis is so is a matterof whichmodelof anexpandingenvelopeyou
believe (seeeg.Hutchings1968,Castoret al. 1975).

If the rotation velocity is 140km/secit is impossibleto achieve
synchronousrotation without involvinganX-rayoccultingradiusmuchlarger
thanthe photosphereandviolating the surfacetemperature-luminosityrelation.
Youhavein anycasetroubleexplainingthewidthof the emissionlines, and
mustassumehighly non-synchronousrotation of the primary. It shouldbe
possibleto test betweenthesealternativesbymakingpredictionsonwakeand
shockwavephenomena,andclearly this is animportantpoint to pursue.

In summary,wehavemuchto learn froma closer observationaland
theoretical studyof this, thebrightest X-raybinarysystem.Wehave(probably)
a neutronstar accretingfroma windrather thana disk, a primarystar with an
extremestellar wind(_ _ 10-5 Mo/year)with this probeimmersedin it, anda
systemin a very interesting evolutionarystate. For example,the primaryhas
the luminosityandpresumablyradiusot a 66M0 star, but apparentiy has i_

than half this mass. It is also presumably -- as for all the X-ray binaries --

in the second stage of mass transfer in a system which may have lost a large

fraction of its original mass. The star is bright enough for high quality

observations and should be investigated further in all respects. X-ray

observations should be investigated for signs and details of the wake and a

search made for slow pulsations of the type (% 280 sec) found in Vel X-I.
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Table i.

153919 line velocities in km/sec

Absorption V o K exc* Emission

N IV -60 25: 94

He II -64 19 76

O III -65 22: 68

Si IV -83 -- 57

He I -87 12 21

Balmer -79 16 i0

Hy -ii0 12: i0

C IV -117 22 85

Mg II -136 -- 16

H8 -150 < I0 i0

V o K I.P.

He II 4686 18 13 54

Si IV 4116 -40 18: 45

C III 5696 -74 16 48

N III 4640 -77: 15 47

*I.P. of lower ion + e.p. of line lower level.

Table 2.

HD 153919 characteristics

P = 3.4126 ± .0003 days

K I = 20 ± 2 km/sec (greater if e > 0)

V o -65 ± 2 km/sec (or is the photosphere expanding?)

f(m) = .0027

M 1 = 27 ± 5 M_

M2 = 1.3 i 0.2 M_

q = 20 ± 3

i = 90 ° ± 5 °

Vro t = 300 km/sec?

K 2 = 400 ± 70 km/see.

Sep/Rprimary % 1.4

Light curve Am _ 0705

Distance 1200 pc.

M v -6.5
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Sunmmry of 3U1700-37 Panel Discussions

J.B. Hutchings

In our discussions we have established some new points about the system

which I shall list briefly. We have also discussed possibilities and problems

concerning the mechanism of accretion in a stellar wind, and the possible formation

and detection of a wake.

The points established are: i) the luminosity of the primary appears to

be normal for its spectral type. Its position in the HR diagram is among the 0

supergiants where masses are thought to be _ 60 M@. It thus appears that the present

mass is low and the star may have lost a large portion of its main sequence mass in

its past evolution. 2) We still have seen no definite evidence of the secondary or

its orbital motion -- either by periodic X-ray -,,o_u_a_u._'1_ ....u_ by optical line

emission. We may still hope that more careful and accurate observations will reveal

evidence of this nanure. 3) Th_ _ilp_ duL_Liu, ib _huLL_L Lh=. _,_=_=_"........ by _.

Uhuru data, but its exact value may still be uncertain, and important basic quantity

to determine if we are fully to understand the orbit, wind and mass-exchange.

On the question of the wake, we have a number of curious and little

understood phenomena near phase 0.7. These are the presence of high velocity

.k .... +4_.o 4_ U# ._A U= TT l l.q/,1 =e ,ao11 _e ehneo nr_v_n._Iv _Pn 4n R_ I I 5875.

and the effects mentioned in my introduction. There is the possible identification

of Fe XIV at X 5303 which clearly needs to be confirmed or investigated further.

Finally, we have seen that there are extra X-ray absorptions at phases near 0.7.

We do not see the clear evidence for a wake that is seen in Cen X-3, as

these effects are variable in phase and strength. It seems likely that simultaneous

optical and X-ray monitoring would be useful. It is by no means clear how the

optical phenomena are associated with a wake and I commend the problem to the

appropriate theoreticians. On the question of velocities and extent of the wake,

it seems generally agreed that tht X-ray source is moving through its local

environment at velocities in excess of i00 km/sec,whatever we assume about the wind

and rotation, so that wake formation is likely. More detailed information and

interpretation would tell us a lot about accretion in a wind and much about the

scale heights of winds in general. At present, theory and ad-hoc models based on

the observations disagree on this point. Further investigation of this bright

system thus seems very desirable from many astronomical points of view.
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HIGH DISPERSION SPECTROSCOPIC OBSERVATIONS

OF HD153919 (3U 1700-37)

A. K. Dupree and J. B. Lester

Center for Astrophysics, Harvard College Observatory

and Smithsonian Astrophysical Observatory

Cambridge, Mass. 02138

AB S TRACT

A spectrogram of HD 153919 taken in June 1975 at phase

= 0.79 shows the following interesting features when

compared to previously published line profiles:

(i) increased central absorption or more extended blue wings

for He II 15411 X and 14541 K; (ii) a change in the P Cygni

profile of HS; (iii) a change in the relative intensities

of,N III and C III in the emission complex 114630-4650 K;
,i_) a previouslv unreDorted emission feature near 15300 _.

These observations indicate the presence of a variable stel-

lar wind from the primary, changes in the emission measure of

the line-forming region in the primary, and possible spec-

troscopic signatures of features in the extended expanding

atmosphere of the primary or the "wake" of the secondary.

INTRODUCTION

HD153919 is a binary star tha_ has been identified as _he

optical counterpart of the eclipsing X-ray source 3U1700-37

(Jones et al. 1973). The binary system contains an extreme

Of star, O6f, making it the hottest of presently known binary

X-ray sources, (Hensberge, van den Heuvel, and Paes De Barros

1973; Wolff and Morrison 1974). The Of primary appears to

dominate the optical spectrum; no direct spectroscopic evi-

dence of the secondary has been found. Line identifications

and details of some spectral features have been presented by

many authors (Hensberge et al. 1973; Hutchings et al. 1973;

Walker 1973, 1974; Wolff and Morrison 1974; Conti and Cowley

1975).

Previous observations of the optical spectrum of HD153919

indicate that certain features may change in intensity and in

line profile. The reported variability of emission features

centers principally in the extremely broad (i00 to 180 X wi_e)

shallow emis_ons^around H_, H7, C III and N III near 14640 _,

and He II 14686 _ (Walker 1974; Hensberge et aZ. 1973) that

may vary in strength in phase with the X-ray flux. These

broad features have been attributed to the outflow of material
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from the supergiant primary that is modulated by interaction

or association with the X-ray source (Walker 1974) Stellar

emission in He, Hy, He I 15876 _, and He II 14686 _ (P Cygni

profile) has been reported t_ be variable during March-April

1973 from plates with 12-18 _/mm dispersion (Hensberge et aZ.

1973) although spectroscopic observations during September

1973 and March 1974 (Conti and Cowley 1975) at 17 to 25 _/mm

indicated that variable intensities occurred only in He and

C III 15696 _ and possibly HA, and little or no variation was

seen in Hy, and He II 15686 2. The stellar absorption lines

are generally reported not to vary in shape or intensity with

the exception of an additional blue-shifted absorption fea-

ture and apparent line doubling that occurs near phase

_ 0.5 to 0.8 in the He I 14471 _ transition (Walker 1974)

and the absorption component of the He I 15876 _ line

(Conti and Cowley 1975).

Here we report high resolution observations of selected line

profiles in HD153919 that show asymmetric blue absorption

wings that are more extensive than those found in 1973-1974 A

In addition, the N III and C III emission lines near 14650

have changed in relative intensity, and there are indications

of high velocity absorptions in He II 15411 _ and 14541

at phase ¢ % 0.79.

THE OBSERVATIONAL MATERIAL

The data were obtained with the cassegrain echelle spectro-

graph and Kron electronographic camera at the 60-inch tele-

scope of the Mt. Hopkins Observatory on 25.27 June 1975. This

time corresponds to a phase, ¢ = 0.787 + 0.075, where the

uncertainty in phase results from the extrapolation of the

uncertainty in the center of the X-ray eclipse (Jones and

Liller 1973).

The echelle format covered the spectral region from 14435

to 15840 _ with small gaps near both ends of the wavelength

range where consecutive echelle orders do not overlap. The

dispersion was 4 _/mm providing a spectral resolution _ 0.2

near the center of an order. The plate was traced on the

David Mann microdensitometer at the Center for Astrophysics

and the recorded data were handled on magnetic tape. Wave-

lengths were determined by means of a thorium-neon comparison

source; in some of the following figures the wavelength scale

is replaced by a velocity scale whose zero point is defined by

the average velocity of the He II lines at 15411 _ and 14541

and represents a photospheric reference velocity. The ordi-

nate of the figures is the residual flux that results when

an average continuum from adjacent orders is subtracted from

an order of interest so as to eliminate the effects of any
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spatial variation in the response across the photocathode

of the Kron tube.

Some line profiles of interest are presented below and dis-

cussed individually. The profiles are compared principally

to those of Conti and Cowley (1975) who have published the

most complete set of profiles with r_asonably good phase

coverage at dispersions of 17 to 25 _/mm. Their observa-

tions were made in September 1973 and March 1974.

a) HS; 14861

The P-Cygni profile of H8 (Figure i) appears similar in

velocity extent to the March 1974 profile (Conti and Cowley

1975) although the emission peak has increased by _ 30

percent of the local continuum. Inspection of the profiles

of September 1973, March 1974 and this one of June 1975

suggests increasing emission with time, since Conti and Cowley

noted no apparent phase dependence in the line.

b) N III, 114634-4642 _; C iii, ii4647-4651

The N iii, C iii uu,,,wi_ ...... in Vigu_e 2 "'hcrc _

fluxes are referred to a local continuum. A most striking

result here is the change in the relative intensity of the

lines; the N III multiplet now appears comparable in intensity

to the C III transition whereas N III was apparently a factor

of 2 stronger in 1973 and 1974. The C III transition remained

approximately constant at 20 to 25 percent of the local con-

tinuum. Now of course the agreement in C III may be fortui-

to.as in view of the necessity to rely on a W!oma]: c_ntinnl_

since these features are superposed on a broad emission

envelope that may be phase dependent. It is possible that

the N III transitions remained constant and C III varied,

in this case on the order of 50 percent in intensity. Since

the lines have similar excitation energies and N III and C III

appear to have the same average velocity variation, it is

somewhat puzzling why a change in the relative intensities

occurs. Provided that the emitting volumes are in corres-

pondence for these transitions, it then would appear neces-

sary to search for an explanation in the details of the line

forming process. Perhaps this might be a density sensitivity

in the dielectronic recombination process causing the emis-

sion or an interlocking radiative process that would affect

one and not the other feature. It is interesting to note that

the C III transition which is between triplet levels, has

spontaneous emission coefficients that are equivalent for

the upper levels of the three transitions shown in Figure 2;

and the transition at 14647.40 arises from the 3P 2 level

which has the highest statistical weight of the term. Thus

it is perhaps surprising that this component of the C III
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feature is not dominant in the multiplet. Takenat face
value, this suggests that the densities in the extended
envelope are not sufficient to ensure complete mixing of the
levels in the term and with detailed calculations could
perhaps be used to obtain limits on the density in the
extended envelope.

c) He II; 15411

This absorption line (Figure 3) is clearly asymmetric _ith
a blue wing that extends to velocities of _ -400 km s- in

contrast to the observations of 1973-197_ (Conti and Cowley

1975) that show absorption to -200 km s- . There is als_
a suggestion of high velocity absorption near -700 km s- .

d) He II; 14541.59

The profile of this He II transition (Figure 4) is not as

asymmetric as the previously discussed 15411 X line and has

a deeper central absorption than the profile measured in

1973-1974 (Conti and Cowley 1975). Here we also note the

presence o; a shallow absorption feature centered around

-500 km s -±. Such a high velocity is consistent with the

possibly expanding absorption feature found in the He I

15876 X transition during 1973-1974.

e) Emission Line; 15294

This spectrum shows a broad emission feature (Figure 5) at an

apparent wavelength of 15293.67 _. On this spectrum, the correc-

tion for zero velocity of the He Z lines amounts to -92.7 km s -1,

suggesting a wavelength of 15295.31 _ if the feature had the

velocity of the He II transitions. The emission line is

broad with a full width at half power of %3.4 _, a valu_

that is comparable to the N III emission line at 14634 K.

Such a width suggests the feature is indeed associated with

the binary system and differs from the narrow lines identified

in another Of star, 9 Sagittae (Underhill 1958). A search

through identification lists, and spectral studies for this

source (Hensberge et al. 1973; Hutchings 1974) and other Of

stars (Underhill 1966; Baschek and Scholz 1971) reveals no

likely identification that is consistent in wavelength, or

previously identified ion species. It is tempting to hypo-

thesize that the emission feature could arise from a highly

ionized atom that occurs as a result of photoionization by

the X-ray source itself. Theoretical calculations (McCray

1974, 1975) have suggested that the X-ray source in HD 153919

can ionize an extended hemisphere of the expanding atmos-

phere of the primary and produce ions such as Fe XIV. The

fine structure transition 3p Pi,2_3P 2p_,_ of Fe XIV occurs at
15303.4 _ (Jefferies, Orrall, an6 ZirkerJ_69) which leads to

a velocity of _ -450 km s -I. This velocity compares
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favorably with other observed velocities associated with the

disturbance of the "wake" of the X-ray source in the atmos-

phere of the primary. Obviously, more extensive observations
of this feature are necessary to search for the intensity

modulation that would be expected if the emission were asso-
ciated with the X-ray source.

CONCLUSIONS

The line profiles presented in this paper give spectroscopic
evidence for an increase by about 200 km s -I in the outward

velocities of the extended atmosphere of the primary star
of HD153919 since 1973-1974. Additionally, there appear to

be substantial (_50 percent) variations in the relative
intensities of the strong N III and C III emission lines
near 14640 _ suggesting changes in physical conditions in

the stellar atmosphere. A previously unreported emission
feature near 15295 K is noted and its identification is

discussed.

._ are grateful to J. Hearnshaw _^= _^_,,__,_ _ _ _o_.h,,_.
for obtaining the spectrum. This research is supported in

Z" 4- --J _..........................
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THE SKYLAB S019 ULTRAVIOLET SPECTRA OF

HD153919 (=3U1700-37) AND HDE226868 (=Cyg X-I)

Yoji Kondo

NASA Johnson Space Center

Houston, Texas 77058

S. B. Parsons, K. G. Henize*, J. D. Wray and G. F. Benedict

Astronomy Department

University of Texas

Austin, Texas 78712

Ultraviolet spectra of HD153919 (=3U1700-37) and HDE226868 (=Cyg X-I)

have been obtained with the ultraviolet objective-prism spectrograph

of Skylab Experiment S019 (Henize, et al., 1975a). The data shown in

Figure I consist of unwidened spectra which extend to 1600_ for

HD153919 and to 2400_ for HDE226868. The wavelength resolution is

about 2_ at 1400_ and 12_ at 2000_.

Fnn HNIq_QIQ _n ,,nwiH_n#a _n_eerllm n{ f_ir nllal itv and _+_nHinn to a

Wavelength of-1600_ was-obtained at 22h08 m on I September 1973. _ The

energy distribution in this spectrum (see Figure I) generally resembles

that of other reddened 0 stars on our plates. However, a break in

continuum intensity seems to occur at a wavelength of about 1720_. We

are unable to give an astrophysical explanation of such a break nor are

we aware of any other star showing such a break. There is a suggestion

of an emission line on the Iongward edge of the break but this could

be either a chance clumping of uraii_s or et=_ a photoqraphic -_--

effect caused by the break. If real, this feature may be attributed

to N IV _1718 (or to Si IV _1724), a line which occurs in emission

in WN stars observed with this equipment (Henize, et al., 1975b).

N IV Xl718 is observed in absorption in other 0 stars (see Figure I).

However, other ultraviolet emission lines observed in the WN stars,

the strongest of which is He II _1640, are not observed in HDI53919.

This spectrum was obtained during an X-ray eclipse, the mid-point of

which occurred at 21h50 m. A second s_ectrum of HDI53919, obtained on

23 August, extends only to about 1900A. It is similar in all respects

to the corresponding region of the spectrum discussed above.

The spectrum of HDE226868 is visible only on the unwidened 4.5 minute

exposure because of its faintness. No recognizable spectral features

were identified longward of about 2400_, which is the short wavelength

limit reached. The spectral energy distribution is in agreement with

that of a highly reddened O- or early B-type object.

*NASA Astronaut at Johnson Space Center.
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Table I - Spectral Types and B-V Colors for Stars in Figure I.

Star Spectral Type B-V

HR6672 07.5 II +0.4

X Per 0 pe +0.31
HD153919" 06.5 laf+ +0.27

HD153426" 09 II-III +0.14

HDE226868 09.7 lab pv +0.85

*same plate (SL3-201)
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He II %4686 PHOTO}_TRY OF HD 153919

• / °

W. Krzemlnskl

Institute of Astronomy, Polish Academy of Sciences

AI. Ujazdowskie 4, Warsaw, Poland

A BSTRACT

The optical component of the binary X-ray source 3U1700-37/

HD 153919 has been observed with the interference filter

centered on the He II %4686 emission. This photometry does

not reveal any dependence of %4686 emission on the orbital

phase thereby confirming earlier spectroscopic result that

the region of formation of the ionized helium emission is

confined to the envelope of the 06f primary.

INTRODUCTION

Soon after an optical identification of tie X-ray binary 3UITOO-37/HD 153919

was suggested (Jones et a£. £_/D), tile author inztiated in i973 _my He ii k4666

photo_:etry of this system. This was a search for phase-dependent photometric

variability of the He II %4686 emission. If any such dependence were found it

could provide us with some useful infort_tion on the extent of the emitting re-

gion in the system. It was found later (Daehs and Sehober 1974; Hutchings 1974;

_olff and >brrison 1974; Conti and Cowley 1975) that the equivalent widths of

the He II %4686 emission line show only small erratic changes independent of

orbital phase and there is little variation in the emission profile, in contrast

explained (eg. Hutchings 1974) by confining the region of %4686 emission line

formation solely to the primary envelope. Such explanation was confirmed by the

radial velocity variations of He II %4686 emission _ich vary in phase with

those of the photospheric absorption lines of the 06f primary (Hensberge et al.

1973; Wolff and _rrison 1974).

O BSERVATIONS

Photometry has been carried out on 39 nights between 1973 May 5 and October II

(UT) using the l-m and 50-em ESO telescopes and the 40-inch (102-cm) reflector

at the Las Campanas Observatory. Standard d.c., one-channel photometers were

utilized on the La Silla telescopes; a two-channel, pulse-counting photometer
° dwas used at Las Canpanas. Interference filters of IOA halfwidth cent,re on

%%4686 and 4800 were used throughout this program; the latter was used for mea-

surements of the continuum. Equivalent width of He II %4686 emission line in
}{D 153919 is around 2.7A and FWHM is ~6_ (Conti and Cowley 1975). Stars BS 6327

and 6344 served as primary and secondary comparisons, respectively. A typical

mean integration time was about one minute on each star in each spectral band

and the nightly averages consisting of two or three observations were formed.

The small corrections resulting from different telescope-photomultiplier spec-

tral sensitivity were applied to the h = -2.5 Iog[I(4686)/I(4800_ indices to
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bring them to the same instrumental system; extinction corrections were ap-

plied to the k4800-filter observations. From repeated observations obtained on

each night one gets the standard error ±0.004 of a nightly average for h, and

±0.003 for Amag (4800).

Figure 1 shows the results; all the observations were folded modulo 3.412 days

using the X-ray elements of Jones et al. (1973). Each point represents the

nightly average; increased He II _4686 emission and %4800 luminosity are up-

wards. The filled circles refer to HI) 153919, the open ones to the comparison

stars. One may infer from the run of observations of the comparison stars in

either panel that the scatter is larger than the errors quoted above. This is

probably due to the lack of full compensation for different spectral sensiti-

vity of the three instruments used.

DISCUSSION

It is readily seen from figure 1 that (i) the photometric strength of the

He II _4686 emission does not depend on the orbital phase though scatter is

2 1/2 times greater than th'a_ for the comparison stars. It would be desirable

to calibrate the ratio I(4686)/1(4800) on early type stars with known He II

k4686 equivalent widths, W, so that one could express the observed variation

shown in figure 1 directly in the W values. (ii) The k4800 light curve shows

a typical ellipsoidal-type light variations with roughly equal maxima and

minima and a total amplitude of about 0.06 mag; the secondary minimum is shifted

to phase -0.65. This behavior agrees very well with the wide band photometry

(eg. Penny et al. 1973).

From lack of correlation between the photon_tric strength of the He II k4686

emission and the orbital phase one nmy conclude that the region of formation of

this emission llne has to be ascribed to the primary envelope, in agreement

with the results of high dispersion spectroscopy. The scatter in the photometric

ratio He II k4686/continuum is roughly three times larger than the estimated

mean error of the nightly average. This is consistent with the small random

changes found by Hutchings (1974) in the equivalent widths of He II k4686 and

other Of emission lines.

The writer would like to express his thanks to Professors A. Blaauw and B.

Westerlund for the invitation to spend several months at the European Southern

Observatory, and to Dr. H. W. Babcock for Guest Investigator privileges at the

Las Campanas Observatory of the Carnegie Institution of Washington.
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X-RAY OBSERVATIONS OF 5U 1700-37

Keith O. Mason, Graziella Branduardi

and Peter Sanford

Mullard Space Science Laboratory,

University College, London

Holmbury St. Mary, Dorking, Surrey, U.K.

ABSTRACT

X-ray observations with Copernicus reveal three categories of

flux variability in 3U 1700-37. High amplitude hourly variations

are energy independant in the 3-I1 key range while a change in

the low energy absorbing column causes variations in flux level

on an orbital timescaie. This _usorpLion is most severe pzioz

to eclipse ingress, suggesting that the distribution of

absorbing material around the X-ray source is asymmetrical

with respect to the line of centers of the binary system.

_hrther, the absorbing material maybe identical with a high

density region infered from optical observations of HD 155919.

In the third category, the maxim%tm source intensity per binary

cycle is variable by at least a factor of two beLween uhserv_iun_.

Measurement of the eclipse duration on three occasions

indicate that it is significantly less than when observed

by Uhuru.

3U 1700-37 has been observed on two occasions by the M.S.S.L. X-ray

instrumentation onboard Copernicus; in July 1974 and again in July 1975.

The data from the first observation are shown in the lower section of

rip,are I and extend over almost exactly one 5.4 day orbital cycle.

_len observing 5U 1700-57, the Copernicus detector also has the source

3U 1702-36 (Sco X-2) in its 5 de,Tee FWHM field of view, and this

contaminant signal (amounting to approximately 50 counts per minute)

is subtracted out along with the charged particle backsTound. The

maximum range of variability seen in 5U 1702-56 during two control
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observationsi_ediatly beforeandafter that of 3U1700-37is markedin
fia-are1 andrepresentsthe dominantuncertaintyin thebackground
subtractionprocedure.Thereare severalpoints to notice aboutthese
data:-
I. Lhetime _pentby the X-raysourcein eclipse is only 0_88±0_06
comparedwith l_lO_0_07asseenbyJoneset al (1973)with the Uhuru
satellite. This shorterdurationis confirmedby the 1975data.
2. Thetransition into eclipseis gradual,with anindication of what
mightpossiblybea pre-eclipsedip centeredon1974day18221hr.
Exit fromeclipseis relatively rapid.
3. Theflux from3U1700-37is highlyvariable, with onoccasion
fluctuationsfroma level consistentwith zeroup to 250countsin
onlya fewminutes. Indeedthis is the mostvariable X-raysourceon
this ti_nescaleof whichweareaware. Thevariability is bestshown
in the uppersectionof figure I wherethemostintenseparts of the
binarycyclehavebeenplotted on themaximumtimeresolutionavailable,
1.5 minutes. Nehavesearchedfor a regularmodulationof the X-ray
flux similar to the283secperiodseenin 3U0900-40(Rappaportand
McClintock1975). Apowerspectrumanalysisrevealednosuchmodulation
in therange2 to 50minutes,with anupperlimit to thepeakto mean
amplitudeof 4_of themeanflux at thehighfrequencyendof therange,
increasingto 20_/_at the lowfrequencyend.

Tolook for correlatedchangesin the intensity andenergyspectrum
of 3U1700-37,wehavetakenthe datafromthreeperiods,markedA,B
andCin fib_re l, andhavebinnedthemaccordingto whethertheyfall
aboveor belowa thresholdof 90countsperminute. 'F_e Copernicus

X-ray detector is fitted with a six channel Pulse Height Analyser (PHA)

for energy resolution, and in figure 2 is plotted the PHA count

distribution in the high and low intensity bins for each of the periods

A, B and C. Also plotted is the ratio of the high to low intensity

channels. In no case is there a significant deviation of these latter

data from a horizontal line, indicating the absence of a detectable

chanae in the energy spectr_n of the source with intensity. This result

is in contrast with that obtained for Sco X-1 (Culhane et al 1975 - this

conference) which shows variability on a similar timescale during active

periods, but a strong correlation between intensity and spectral slope.
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Neither is it the behaviour expected if the fluctuations were caused by

variable amounts of obscuring material, unless this material were

completely ionized.

Figure 3 shows the Copernicus data integrated in bins of three hours

duration, together with a spectral hardness index obtained by dividing

the total counts in the four high energy PHA channels by those in the

two low energy channels. Also shown on approximately the same intensity

scale, for comparison, is the folded Uhuru data of Jones et al (1973)

similarly binned. Note that the flux level at the time of the Copernicus

observation is about twice that seen by Uhuru.

Model spectrum fits to our data indicate that it is consistent with

a constant temperature throughout and variable low energy absorption

(the converse is not true.'). The variation of spectral hardness index

in figure 3 can therefore be interpreted in terms of changing amounts of

right hand ordinate of the diagram. It can be seen that the degree of

absorption mirrors the asymmetric intensity profile discussed earlier,

and the absorbing column is larger prior to eclipse ingress than it is

after the source comes out of eclipse. This behaviour is again seen in

the 1975 dat_ (f_&_ra 4).where two and a half successive binary cycles

were observed, and confirms that this is a phase dependant effect.

The strength of the source in 1975 was less than that in 1974 and nearer

the value seen by Uhuru.

In figure 5 we have drawn a schematic diagram o£ the 3U 1700-37 -

HD 153919 binary system in which we have indicated the lines of sight

along which high absorption columns are seen. Optical observers of

HD 153919 (eg Hutchings 1974; Conti and Cowley 1975) have inferred from

their data the presence of a high density region trailing the X-ray

source in its orbit, and it is tempting to suggest that the optical

observations may be explained by the same material which causes the

anomalous X-ray absorption. It is difficult to model the phenomenon

in teens of an accretion wake, since this would extend downwind relative

to the X-ray source and produce a maximum in absorption between phase

0.5 and 0.75, not after phase 0.75 as in the present data (cf Charles

et al '1975, figure 3 - this conference). Other possible explanations
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include a gas stream in the binary system, or an asymmetry in the stellar

wind of HD 153919. 'l_is is clearly and area in which coordinated X-ray/

optical observations might prove useful.
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The Broad Emission Features and "Wake" in HD 153919

E. N. Walker

RoYal Greenwich Observatory,

Herstmonceux Castle,

Hailsham,

SUS sex,

England.

It is shown that the broad emission features in the spectrum of

HD 153919 are associated with the x-ray secondary and not significantly with

the primary star. When the primary is at maximum velocity towards us the

HeI line k4471__evelops a blue shi±ted secondary component with a velocity

of -470 km sec relative to the primary.

Introduction

The star HD 153919 is the optical counterpart of the x-ray source 3U

1700-37. The identification is secure because both photometry and radial

velocities of the star show similar periods to the x-rays which exhibit an

'off' phase for nearly one third of each orbit. Combination of x-rav and

optical data shows that the secondary in this binary system is the source

dominant x-ray variation.

The first description of the spectrum of this star was given by Walker

(1973) who showed that the star was _ O5.5f but with extreme features due to

CIII k4647, 4650 and 4651, not normally found in this spectral type, and a

HeII emission line, _4686, among the strongest to be found at this spectral

type. Various lines from different optical dept_s showed an expansion

through the atmosphere of from zero to 200 km s , a feature commonly found

in extreme OB stars.

Underlying the main spectrum were found to be several very broad

emission lines, which, if they were due to single narrow features and their

widths due to either rotation or expansion, suggested velocities of between
6,000-12,000 km s . Such velocities would be extreme if associated with a

non-compact object. The lines seemed to be centred on approximately HS, Hy

and H6. Their existence was confirmed by Hensberge et. al. (1973) who also

found a similar feature underlying HeII _4686, although Bopp and Grupsmith

(1974) failed to detect these features during five consecutive nights in

June 1973.

There are two main problems associated with these features. One is to

decide whether they are single, narrow features with some type of velocity

broadening or are the broad features seen in Wolf Rayet stars. This latter

569



seems not to be the case, as the lines do not coincide with the ';olf Rayet

features. The other problem is to decide whether these features are assoc-

iated with the primary 05.5f star, in which case they are probably evidence

for massive outflow from this star, or are associated with the x-ray emitt-

ing secondary, in which case their widths are probably due to the extreme

gravitational field of a compact object.

The Analysis

The observational data were 18 E.S.O. spectra loaned to the author by

Prof E.P.J. van den Heuvel and tracings of 34 Radcliffe spectra. Walker

(1974) lists the data. Our analysis consisted in visually examining trac-

ings of all spectra for the presence of the broad feature near Hy. This

was chosen, as on the spectra available its detection was most certain.

Figure 1 shows tracings of two Radcliffe spectra where the upper spectrum

clearly shows the feature while the lower spectrum does not. The presence

or absence of the Hy feature was estimated on a scale of from zero, meaning

the line was not detectable to +2 meaning the line was present and strong.

Figure 2 summarises some of the x-ray and optical features of this star

while in the lower part the results on the Hy feature are shown. Although

at any phase the line might be absent it is only ever seen as a strong

feature when the x-ray secondary is visible. The line is never certainly

present during x-roy eclipse, strongly suggesting that the broad features

arise near the secondary. Inspection of spectra taken only % 1 hour apart

shows that even when these lines are present and strong they are not perma-

nent features and can go from max{mum strength to being invisible in % 1

hour. The width of the_e lines, if interpreted as due to velocities, gives

widths of ± 6,000 km s This is higher than the escape velocity from a

white dwarf and if the material is in orbit about some object, that object

must be more compact than a white dwarf. Without in any way being the only

possibility, it is tempting to visualise these lines as arising in material

circling either the neutron star or blackhole secondary, with their emphem-

eral nature being due to variations in the gas flow density in this region.

The Wake

During the course of the above investigation it was noticed that on

some spectra the HeI X 4471 line occasionally showed either a violet dis-

placed wing or secondary component. This feature was only ever seen on the

shortwards side of the line and never to its red. Further investigation

showed the phenomenon to be phase dependent. Starting just after phase 0.5

a weak, violet wing is observed on %4471. This progressively increases in

both strength and apparently in violet displacement until just after phase

0.7 the whole of %4471 is dominated by this feature. By phase 0.75 the wing

has ceased to exist andlhaS been replaced by a clearly resolved violet dis-
placed line % 470 km s- from %4471. This displacement is sufficiently

great to render impossible any confusion between this feature and the for-

bidden component of %4471. By phase 0.8 the whole feature has disappeared.

Conti and Cowley (1975) have since discovered a very similar phenomenon at

Hel %5875 and the reality of the effect seems beyond doubt.
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The difficulty arises in deciding where in the binary system the

material casuing these absorption features lies. If the material lies

between the primary and the observer then the feature is presumably due to

a 'wake' created in the expanding atmosphere of the Of star by the passage

of the secondary. However due to the phase of the phenomenon, i.e. maximum

bluewards shift at the same phase as maximumbluewards shift of the primar_
O

then we have to hypothesise that the wake persists for 90 round the orbit

despite the fact that within the parts of the photospheme accessible to the

opti_l observers the outer parts ame known to be moving outwards at 200

km s relative to the inner parts. Alternatively, if__he material is

closely connected with the secondar_ then th_ 470 km s blue shift just at

the time the secondary will have % 400 km s- red shift is equally hard to

understand.

Conclusions

A study of 42 spectra obtained over seven years suggests that the

broad emission features arise close to the x-ray component of this binary

system and when they do occur they are transient events with life times of

the order of one hour. The violet displaced HeI absorption features which

occur near phase 0.75 seem to be a stable feature in the orbit as they are

always seen. However the location of the material causing these features in

relation to the two components of the system is problematical.

The author would like to thank Prof E.P.J. van den Heuvel who provided

all the E.S.O. spectra used here and Mr R.M. Catchpole who provided tracings

of all the archival Radcliffe spectra.

References

m_. m w • e_,,p_m_th. _. 197_. Mon. Not. R. astr. Soc , 167, 65P.

Conti, P. S. & Cowley, A. _., IWV5. Ap. J., 200, 133.

Hensberge, G., van den Heuvel, E. P. J. and Paes de Barros, M. H., 1973.

Astr. Astrophys., 29, 69.

Walker, E. N., 1973. Mon Not. R. astr. Soc., 162, 15P.

Walker, E. N., 1974. Mon. Not. R. astr. Soc., 169, 47P.

571



He II 46116

Clll 4151-50-47

N Ill 4142-41
NIII 4134

He II 4542

H • I 4471

4542

4471

1--74430

HY

4200

4026

Ca II K

(J

•._ m 0

o_

r_

 O.o,
_ o _

o

.,-t
_ • •

I1) _ G) <1/

_'_ 4-_ O

m ID ffl

(.}_ O +u

4JH _

0 .M -_

_ _._'_

572



120

|0

4e

--IO

--80

-- 181

-- 120

I'14

l'Sl

O.O

0-4

2:1

1:1

0:t

2-1 me+ Luminosity [co+.ts/sec)

• .cr6.a veOoclty (km/**c)

Pbetomeir7

• atio 4471
4S4|

OT

O0"S

OO

• _ OS-S

• atio Vl.l.t wmml •f& 4471

main iimo o# aqqll

|ll'Oqth o| Irllql omliqllon at H _f

X-RAY |¢ LgP||

r I I I

I. iADCLIFFI

o. t.l,O,

• o _lm a mid • •

o • o • • • o D • = •

• 8_ m • o no • • nnwo o moo • gn m •

o ., .2 .s ._ ._ ._ .:l ._, ._ o
PHASE
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details 09 HD 153919. The bottom frame shows the phase relationship

of the broad emission features while the frame above shows the phase

dependence of the HeI _4471 violet wing.
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HD153919 (3U1700-37)

Discussion

Po Murdin to C. To Bolton:

l'd be circumspect in putting X-ray sources into a reddening-distance

relation. The field stars are selected down to an apparent magnitude so

the more reddened stars are discriminated against, but the X-ray sources

are selecting themselves with a high optical luminosity and are

identifiable through more reddening. This is why this star, HD226868 and

the Cen X-3 candidate are all more heavily reddened than the stars in the

field° So the reddening distance is an upper limit to the true distance

of the star°
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THE X-RAY BINARY HD77581 + 3U 0900-40

N. V. VIDAL

Center for Astrophysics, Cambridge, Massachusetts, and

Wise Observatory, Israel

1. Introduction

3U 0900-40 (also known as Vel XR-1 and GX 263+3) was first detected by

Chodil et al. (1967). In 1972, observations by the OSO-7 UCSD and the Uhuru

satellites revealed an X-ray period of about 8.95 days (Ulmer et al. 1972,

Forman et al. 1973). Through the photometric period, Hiltner (1973), Vidal

et al. (1973, 1973b) and Jones and Liller (1973) established the identification

w_th the early type supergiant HD 77581. For a detailed account with references

to these early investigations, see Jones (1974).

Fig. 1 shows the X-ray position of 3U 0900-40. The 7th magnitude star

HD 77581 is clearly inside the error box. The position, the identical periods

at X-ray and optical frequencies, and the occurence of the X-ray minimum during

the shallower optical minimum establish this identification beyond doubts.

From spectroscopic and photometric studies, it was soon realized that the

compact secondary X-ray companion is an "exotic" type star, since its mass

was in the range 2 _ M/Mo _ 3. Therefore the secondary could be a massive neutron

star or a black hole(Wtekramasinghe etal. 1974 (WD), Zuiderwijk et al. 1974

(ZE), Hutchings 1974 (fir)). Recently the SAS-3 group found a 283 sec period

modulated by a Doppler shift (see Rappaport and McClintock 1975). This

outstanding discovery gives us the first opportunity to study the physical

parameters of an X-ray binary system in a fairly accurate manner, since both

mass functions are now known. In particular, the mass estimate of the X-ray

star would be the first of its kind (whether it is a white dwarf, a neutron

star or a black hole).

575



In this review, I present the properties of the binary system in the

different regions of the electromagnetic spectru_n, from X-rays to the radio.

Physical parameters and a model for the system are then derived.
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2. The X-ray observations

Fig. 2 shows the Uhuru observations taken during May and June 1972

folded with an 8.95-day period (Forman et al. 1973), The total eclipse is

an indication of a high inclination angle for the system. Its duration is

1.9 -+ 0.05 days. The scatter is probably real: FiE. 3 shows an X-ray flare

(_.factor of 50 in intensity) of about 2 hours duration . Jones (1974)

shows that at the peak of the flare, the time scale of these variations is

less than 0.4 sec _. Spada et al. (1974) • also detected an X-ray

flare (4. lo level) that reached about twice the average intensity level and

lasted for a few seconds. Analysing lO0 sec observations taken at phase

O. 42, Spada et al. did not find any periodic pulsations on time scales of

I0 sec to 2 ms.

Eadie et al. (1975) observed this source with the Ariel V staellite during

almost two cyclces. Fig. shows the count rate as function of both time and

phase. They noticed four persistent relatively strong "dips" on top o£ the

usual fluctuations found by Uhuru. The spectral hardness varies too and

becomes lower during these dips, possibly indicating a varying circtmstellar

origin.

Ulmer (1974) shows the X-ray spectrum up to 100 key. It is

relative1 i flat and similar to several other X-ray binaries. From a power

!aw fit, the low-energy cutoff varies between 2.2 and 4.4 key and the

spcctral index from -0.2 to +0.7 (Jones 1974). This would correspond to a

hydrogen column density between 3.7 and 3.2 x 1023 atoms per cm 3. This is
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remarkablyhigherthan the neutral hydrogen column density of 6 x 1021

atoms as derived from the 21 cm line in that direction (Jones 1974),

and it is likely to be of a varying circumstellar origin.

Recently the SAS-3 group (IAUC 2794 and IAUC 2833) reported the remarkable

discovery of a double peaked 283 sec pulse modulated by a Doppler shift. They

observed it in the 1.5 to 2.7 Key range but the strongest pulses were found

in the 8-18 Key range. The best fit parameters are:

P = 282_8913 ± 0.0004

asini = 109 ± 4 light seconds

K = 268 ± 12 k/sec
x

f(M) = 17.3 ± 2.0 M
o

' e = 0.15 _ 0.05

: 1570 ± 260

These parameters, and especially the much awaited mass function and eccentricity

opened the way to determine accurately the mass o£ an X-ray star. (For a

more recent determination of these parameters, see McClintock; this symposium.)
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3. The optical light curve

In two consecutive IAU circulars, Hiltner (1973) and Vidal et al. (1973)

announced independently that the photometric period of HD 77581 is identical

to the X-ray period of 2U 0900-40. (For previous investigations, see Jones

1974.) Several authors observed the optical light curve in U, B, and V

but the most extensive sets of observations in V was done by Jones and Liller

(1973) and by Vidal (1974). These two sets of observations are in good agreement

and are therefore suitable for theoretical analysis (Fig. 5_. Both were taken

on several consecutive cycles, with several days of overlap between the two

sets. Since the claimed accuracy is about 0.01 m, the scatter of about 0.05 TM

in the light _urvc seems to be intrinsic so _-_L= star. _-,,,=X-ray =_^_+_-'_*"w_jmentioned

section 7) are consistent with this interpretation. Fig. 6 shows that the

maximum that was due about March 3, 1973 did not show up and this obscuration

is likely to be of circumstellar origin.

The double-peaked light curve is usually interpreted as arising from the

ellipsoidal aspects of the primary as seen by the observer. However, the lower

part of Fig. 6 does not show that these aspects have any observable effect

on the colours (Temperature).

Due to the scatter, it is difficult to see any special asymmetries like

the one arising from an eccentric orbit. However, the radial velocity curve and

the X-ray pulses do show a definitive non-zero eccentricity of about 0.15.

Therefore, it would be of great interest to look for a possible apsidal

motion. Since there is much scatter in the light curve, the study of these

variations should use statistical methods.
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4. The optical spectrum

Several authors describe the _pectrum as very similar to the BOIa star

e Ori (Hiltner et al. 1972, WD, ZE). However, there is not yet a general

agreement as to the precise spectral class and luminosity. In a detailed spectral

and continuum analysis, WD found that HD 77581 is probably very similar to

the BO.5Ia star HD 152254 in the Sco OB1 association. Apart from the structure

of the Ha line, the only difference found was the somewhat broadened lines

of HD 77581 relative to HD 152234. They attributed this difference to a higher

rotational velocity of about 90 km/sec. ZE classify it as BO.SIa too, and

glve an even higher rotational velocity of about 150 km/sec. However, the

presence of a binary companion and a critical Roche lobe may create an over-

extended atmosphere imitating a lower gravity and thus giving the impression

of a relatively higher luminosity class. Therefore, although the star looks

like a BO.SIa star, a direct derivation of its mass and other physical

parameters like those for "true" la luminosity class stars would not be com-

pletely safe. On the other hand, the temperature and gravity as derived directly

from continuum scans are more reliable parameters (Fig. 7 ) (T = 250000 "and

log - 2.8, WD).

Compared to other supergiants that are optical counterparts of X-ray

binaries, the spectrum of HD 77581 looks very "naive": No peculiarities are

found. The usual typical spectral lines of early type supergiants like He I,

Si III, Si IV, N If, N III, C III and OII are all present. The band of C Ill,

OII and NII at % 14650 is in absoprtion. No nitrogen or carbon anomalies
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(Walborn 1970) are found. Tracings of several lines show sometimes a distorted

profile which may be correlated with phase (ZE, (Fig. 8 ). The He II 4686

line is probably filled in emission. A visual inspection of some forty spectral
0

plates of 90 and 45 A/m dispersion which the author took at Mr. Stromlo

did not reveal He II 4686 above the continum,. Jones (1974) took scans (about

4 angstroms resolution) in this spectral region and concluded that "there is

little or no measurable He II 4686 observed in HD 77581." (Fig. 9.).

Hutchings (1974) reported a weak and sometimes sharp line in emission at

different phases on his high dispersion spectra. Compared to other similar

optical counterparts like HD 226868 and SK 160, the relative weakness of

this line in HD 77581 is remarkable.

6284. The H and K lines are relatively strong and are consistent with a

distance of about 2 kpc (see section 5). ZB report an unidentified line at

A6290 which is variable and therefore expected to be of circumstellar origin.

It would be of interest to correlate this variability with phase and/or

with the shape of the Hu profile (see section 7).
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S. The distance

Low gravity is not a sufficient condition to assert a high luminosity class.

An underluminous low mass star may have a low gravity too. Thus the distance is

an essential parameter to establish the intrinsic luminosity. There are several

arguments in favor of a relatively distant and therefore a high intrinsic luminosity.

i. The reddening (E(B-V) _ 0._) corresponds to other reddened supergiants

(_V % -Tm_ in the same direction and at an apparent distance modulus of about i_.

For a 3£(B-V) = 2m visual absorption, HD 77581 would be at a distance of _ 2 Kpc

(Fig. I0).

2. The equivalent width of the Ca I[K line points to such a distance

too (ZE).

3. Reddening and polarization ratios are all consistent with an interstellar

origin rather than circumstellar.

However, due to the scatter in the calibration of the reddening and the

equivalent widths as a function of distance, the absolute visual magnitude may be

as low as _ = -5.5.

For a distance of about 2 Kpc, the X-ray luminosity would be _ 1057 ergs/sec.
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6. The radial velocity curve

Since the mass function of the X-ray companion is known, the mass function of

the optical companion is now of utmost importance. Together, they may allow the

mass determination of both companions, provided the inclination of the orbit can

be derived from the light curve. As is well known, radial velocities of early type

supergiants are difficult to measure. The Ha studies in HD 77581 (section 7)

revealed the fact that circumstellar material is playing an important role in the

outer region of the system. ZE found a correlation between the distorted shape

of HB and some He I line profiles as a function of phase (Fig. 8), and the profile

of the Ha line as well). These streams would produce asymmetrical profiles and

would make radial ,,_la_*y measurements less re!i_b!e: Furthermore, lines of

_iff_r_nt elements may be affected differently.

Three sets of extensive radial velocity observations are given by ZE, Petro

and Hiltner (1974) and Wallerstein (1974). Although the first two sets agree with

each other (within the observational errors) the work by Wallerstein show_ that, at

Petro and Hiltner on two nights in common with Wallerstein show that, evidently,

these two nights are in disagreement with the rest of their observations_ although

they were taken with the same equipment. Therefore we shall adopt the assumption

that Wallerstein_s observations are of non-orbital origins (Hutchings 1974_ Petro

and Hiltner 1974). Although there is a good basis for it, this assumption should

be taken with great caution until more extensive observations are made. From the

mean radial velocity curve, Petro and Hiltner derived the following
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parameters (Fig. 13)

V = -S.O ± 2 km/sec
0

e=0.19+2

K = 22.7 ± 2 km/sec

0
_=28 ± I

f(M) = 0.011M
0

ZE found that the Balmer lines, the He I lines and the metal lines, although

close to each other, give slightly different sets of parameters. For the

hydrogen lines they find (Fig. 12)

V = 3.6 ± 0.6 km/sec K = 26.0 ± 0.7 km/sec
0

0 0
e = 0.223 ± 0.024 _ = 13.4 ± 7.8

f(M) = 0.0147

and for the metal lines (Paradijs et al. 1975)(V ° was not reported)
0 0

K = 22.4 ± 2.0 km/sec _ = 357 ± 32

e : 0.16 ± 0.i0 f(M)= 0.010 M
O

At the moment, since all three sets of parameters are within the claimed

observational errors, we regard all three as essentially identical. The main

conclusion would be that the orbit is eccentric with a probable mass function of

about 0.013.
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7. The distribution of circumstellar material from H= studies

The multiple structure of the Hu line in emission and in absorption

shows that a rather complicated pattern of streams prevails in the outer

regions of the system. According to the accretion model mechanism, such a dynamic

extended atmosphere is expected to supply the material to the X-ray emitting

disk around the collapsed secondary. Bessell et al. (1975) took high dispersion

Coud6 spectra of H_ during several cycles and combined their observations with

Z_'s and Wallerstein's to look for a possible periodic flow pattern. They found

two persistent absorption and one emission components that vary in position and

intensity more or less according to phase. Pig. 115; is a schematic profile of the

observed Ha line. The velocity range of the "fast" blue _shifted absorption is

about 250-420 km/sec and it grows with phase £rom 0 6 _u G._5. T,_,_..... J

slower moving absorption is probably less than 100 km/sec. (Its exact values

are difficult to estimatesince it is overlapping with the slope of the

• emission line). The structure of the double peaked line may be interpreted

as arising from a large extended static atmosphere on which is superimposed

a slow moving stratum that "cuts" the blue side of the emission line (and pro-

duces the double peaked shape of the emission). Fig. 4 is a reproduction from

Bessell et al. showing a schematic view of the gas-streaming model. (Note the

absence of streams (absorptions) at phases _ 0.5-0.5 and _0.9-0.1). It may

be interesting to note that two of the strong X-ray "dips" found by Eadie et

al. (1975) do correspond to the phases _ 0.26 and 0.65 where the streams are

most active.
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The picture derived from these He studies and especially the presence of

the high velocity stream suggests that the outer parts of HD 77S81 atmosphere

al_close or above the escape velocity and, therefore,are unlikely to be confined

to the Roche lobe limits. This conclusion lends support to theoretical models

in which HD 77581 is in contact with its Roche lobe. Furthermore, this picture

explains the distortions found in the line profiles of many lines in the spectrum,

which, in turn, would yield discordant radial velocity curves and inaccurate

mass functions. Finally, the streams model may explain the source of the scatter

in the light curve, and more specifically, even the long term obscurations

found for example on March 3, 1975 in Jones and Liller's (1973) observations.
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8. Ultraviolet, Infrared and radio observations

0
Nandy etal. (1975) observed the UV flux over the wavelengtbs1350-2500 A

and found that HD 77581 is very similar to other early type supergiants (Fig. 15).

0
The broad absorption feature centered at 1920 A is present and the continuum at

the shorter wavelengths decreases systematically as compared to a main sequence

star of the same spectral class. The continuum is very similar to that of the

BOIa supergiant _ Ori and thus lends support to a high temperature of about

250000 K (WD). However, since both continua are depressed relative to main

sequence stars of the same spectral type, the temperatures of both ¢ Ori and

HD 77581 may have been overestimated by about 50000 K (Humphries et al. 1975).

Nandy et al. (1975) discussed also the distance as derived from their

estimates o± the lnterste_lar obscuration, lhey found _ha_ the _y_tem i_ _L

1.5 ± 0.2 Kpc, as compared to about 3 Kpc derived previously from optical

observations. However, due to the scatter in the optical calibrations, these

two values for the distance may still be compatible.

Infrared observations in the region between 1.25 to 3.6U by Hyland and

Mould (1975) and Frogel and Persson (1975) show that the emitted infrared flux

is normal for early type supergiants. Hyland and Mould followed the variations

in the K band and found intensity modulations of about 0. lmm consistent with

the optical and X-ray periods (Fig. 16). The variations can be interpreted in

the same way as in the optical region, namely, that the light curve is the

manifestation of limb and gravity darkening of the rotating ellipsoidal optical
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primary.These small variations in the K band and especially when the secondary

is between the optical primary and the observer do not support the existence of

a large obscuring cloud around the collapsed secondary. This is also confirmed

from Ha studies (section 7).

No radio flux has been detected from this system (Tananbau_ and Tucker 1974).

Hjelming (private communication_ 1975) reports an upper limit of 0.004 Jy at

2695 and 8085 MHz.

588



9. Polarization observations

The recent discovery of the periodic pulsations of about 283 sec in the

X-rays may suggest tha t the s_condary companion is an unusual.ly slowly

rotating neutron star. Therefore the search for a relatively strong

• agnetic field would be of utmos_ .importanca _o complement ,our. knowledge

of the character of the secondary. It is expected that the Zeeman effect would

be manifested as circular polarization at the wings of the Balmer lines, whether

from plasma emission around the system or directly from HD 77581. Furthermore,

it is likely that the maximum _._cunt o£ circular polarization, if any, would be

detected when the neutron star is in between the observer and the optical
0

primary. At this phase the rotating nagnetic field is most exposed to the observer.

If the circularly polarized power is high en6ugh, a possible periodic pulsation

o£ 283 sec may be detected.

Unfortunately, very few polarization observations have been made, and,

furthermore, the results contradict each other. Kemp amd Wolstencro£t (1975)

report a positive result, leading to a varying magnetic field o£ up to 104 Gauss

on the primary. Angel et al. (1973) were not able to confirm this result and

state that the 105 or less Gauss they detected are "consistent with random

errors expected from photon statistics assuming no magnetic field".

In view o£ the importance of these polarization observations, it would be

desirable to organize an extended observational program to put, at least, upper

limits on the physical parameters involved.

Kemp and Wolstencroft report also a varying linear polarization component.

If confirmed, it is likel)_ to arise from electron scattering in the asymmetrical

shape o£ the optical primary, and occasionally, £rom "tongues" o£ material (see

section 7) around the system.
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10. Parameters estimates for the binar Z system

Since both optical and X-ray companions have observed mass functions and the

analysis of the optical light curve should yield the orbit inclination, both

masses as well as other parameters of the system can be calculated. As in

similar binary systems (where both companions are optically seen), streams of

matter may distort the radial velocity curve and produce a similar large scatter

in the light curve. Therefore, careful examination of the observations is needed

before adopting mean observed values and their accuracies. We could adopt the

extreme view that all observed deviations have equal weights and therefore

should be included as uncertainties. Such an undiscriminatory attitude may be

the safest but it neglects the physical insights that may help in "cleaning" the

observations from side effects. We have already mentioned (section 6) that the

radial velocity observations by Wallerstein may be affected by non-orbital

components and may therefore be given a lower weight in deriving the orbital

elements of the system. Other workers did find such anomalies (Hiltner et al.

1972; Petro and Hiltner 1974). In the case of the light curve the relatively

large scatter prevents a straightforward determination of the amplitude_ Here

again the anomalies (like that found on March 5rd, 1972 by Jones and Liller)

should not be included while folding all observations to estimate the mean

amplitude. For example, in the extreme case, a free hand curve connecting such

obscuration events would yield unrealistically small amplitudes that have nothlng
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to do with the true orbital revolution. Observations taken consecutively and

in a long period of time allow the detection of anomaliesj and the "cleaning"

process is then reliable. Thus the mean of ali amplitudes derived in each cycle

separately would be a better representation than an amplitude derived by folding

all data. Accordingly, isolated observations should be discarded from amplitude

analyses. _e amplitude derived from such a procedure is 0.110 ± 0.01S mag in V

(Jones and Liller 1973, Vidal 1974).

The inclination of the orbit is usually derived using a Roche lobe analysis.

(For a critique of this assumption_see Kondo(1974_ and Kondo and _|cCluskey, this

volume). It is assumed that the light curve is the manifestation of the different

aspects of a distorted star during its orbital revolution. The li_it variations

are determined by the orbital parameters and the atmospheric properties of the

_tical companion. Several computer programs exist now that generate such

theoretical light curves. The input parameters that yield the best fit to _e

observations are then adopted as the parameters of the system. Wlckramasinghe

and l#helan (197S) gave an excellent analysis and comparison of several existing

programs and found a good agreement between Wilson (1972), Strittmatter et al.

1973, Avni and Bahca11 (197S) and their program. Their analysis (1974) for

BD 77S81 used full cycles data and yielded the following best fit parameters:
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800 < i < 900

%

e ':, 0.1

.v 00

%

q "_ 0.093

The three last parameters are consistent with the radial velocity constraints

from X-ray and optical observations (Rappoport and McClintock 1975) Obviously,

the inclusion of a[1 existing data without discrimination (see discussion above)

_ay yield a larger range for the inclination angle (Fig. 17 , curve a, Petro and

IIiltner 1974, Avni and Bahcall 1975).

The mass function of the X-ray companion is

[,i 3sin i 3

P

(t.!p +_'x ) 2

= (i7 3 + 2.0)M 0

For the optical companion a mass function that is consistent with the obser-

vations of Petro and Hiltner, ZE, and Paradijs et al. (1975):

M sin 3 i

x = (0.1025 +- 0.0025)M 0

(Mp +,_!x)2

in Fig. 18 we plotted the possible range of masses for the two companions using

the last two equations for i - 900 and 800.Each equation yielded two l.imiting
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lines (curves) corresponding to the given lower and upper limits. The mass ranges

are (in solar units)

1.56 < M < 2.1 18.1 < M < 23.0 for t = 900
-- x-- -- p--

1.64 _ M < 2.2 19.0 < M < 23.7 for l = 800
-- x-- -- p--

1.9 < M < 2.55 20.7 < M < 27.7 for the extreme case 1. = 700
-- x-- -- p-

Due to its mass, the safest conclusion about the secondary is that it is unlikely

to be a white dwarf. However, the mass is at the very upper limits for a rea-

listic model of a neutron star (Malone et a1. I975) and, in this respect, it is a

little puzzling. According to current theories, the 283 sec periodicity rules out

a black hole, if its origin is from a disk surrounding the X-ray object.

The mass estimates of the primary makes it a true supergiant, although not as

massive as previously suggested (Wickramasinghe et al. 1974, ZE 1974, Hutchings

1974) This is also consistent with the calculated radius of about 30 R
o

(WiekramasingheandWhelan1974). Due totheuneertaintyinthe distance, the

absolute visual magnitude may be as low as M = -5.5. Fig. 19 shows that even such
v

a low luminosity makes HD 77581 overluminous for its mass.

From the derived parameters, it seems that HD 77581 may not be in corotation

with the orbit of the secondary. A more quantitative estimate (with the uncertainties

involved] of its rotational velocity would be desirable. Wickramasinghe (1975)

calculated light curves taking into account different degrees of departure from

corotation. He found that, in general, for a given radial velocity amplitude,

the value'of the masses of both companions are overestimated if corotation is

assumed.
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II. Discussion

From the extensive and wide variety of observations it seems that the parameters

of the binary system are now fairly well known. The accuracy given for each para-

meter is common to many other binary systems of this type. In the following we

give the various parameters that fit best the X-ray and optical observations:

Orbital period = 8.96 days

I. x-rays:

Eclipse duration = 1.90 ± 0.05 days

a sin i = 109 z 4 sec

K = 268 ± 12 km/sec
x

f(H) = (17.3 ± 2) M 0

e = 0.15 ± 0.05

= 1570 . 240

pulse period = 282.9 sec

II. Optical:

250000 %
Spectral type Bo. SIa, T e log

2.8

K = 22-27 km/sec
P

V = -5 km/sec
o

fCM) = (0.0125 ± 0_0025) M0

800 < i c 900

_%0

'b
e _ 0.15

q _, 0.093
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III. Mass ranges:

lS.6 _ MxIM0 <_.2.2

18.1 < Mp/MQ _< 23.7

(£or more recent values that are slightly different, see the following

reports. )

As for the model of the system, studies in lt_ and X-rays show that various

streams dominate the outer extended regions. A thorough study of these flow

patterns is needed. Elimination of those active phases may help to give more

reliable observable parameters.

Since the optical luminosity of tD 77581 may be as low as _ 5 x 1038 ergs/se¢,

the ratio of the optical to the X-ray luminosity may be of the order of 100

llnoependent o2 dlstanceJ. It would be even smaller during X-ray flares. There-

fore it would be of great interest to try to detect the 283 sec pulsations in

the optical region. As in polarization observations, these pulsations, if any,

would be maximized when the X-ray secondary is in between the observer and

liD 77581. Fortunately at this phase, the Ha studies show little activity.

The origin of these pulsations is not well understood. The period is unusually

long for a neutron star rotation. Transfer of angular momentum of opposite

direction to the neutron star spin may have slowed it down to the present period.

A rough calculation shows that if this process was 100 per cent efficient, then

at a mass loss rate of 10 -9 Mo/Y it would take 107 years to slow it down from

1 se¢ to 300 se¢ (a stream velocity of 400 km/sec is assumed, as from }h studies).

This is larger than the whole ma'in sequence age of HD 77581. It is possible that

HD 77581 was more active in the past: With an average mass loss rate of 10-6M0/Y,
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104 years would be sufficient (all these estimates have been made with 100

per cent efficiency and no magnetic fields present). On the other hand, if

the pulsations are from free precession origin then the expected spin periods

would be in the range 0.1L0.OI sec (Brecher 1975). Spada et al. did not dezect

such pulsations in their 100 sec flight. It would be interesting to look

again for such pulsations during an extended observation.
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F!S. i: Location of 3U 0900-40. The bright star inside the error box is

the early type supergiant HD 77581 (Forman et ai.1973).
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_: Uhuru observations folded modulo 8.95 days (Forman et al. 1973).
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Fig. 9: Spectral scans at about X4665 added together (Jones 1974).
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Orbit of HD7758! (3 U 0900--40)
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Slow Stream.

Fast Stream

_: Schematic profile of the Ha line.
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A symposium on X-ray binaries

HD 77581 + 3U0900-40 session (Wednesday morning)

Chairman Summary (N.V. Vidal)

q_ne emergent picture is that we need better observational parameters

to determine the orbital elements and masses of the system, ql_e opti-

cal light curve is and will stay probably highly scattered and it will

be difficult to improve the lower limit for tile inclination angle. How-

ever long range observations in both X-rays and optical regions are

still needed to detect a possible variation in m, namely, the opsidal

motion. The amplitude of the radial veiocity curve is fairly known

desirable, but the study of the line profiles as well as the grouping

of elements should be made with great caution to determine a reliable

radial velocity curve. I{_ studies and X-ray variations in both soft and

hard regions may help understand the streams and wake models of the

system. Polarisation observations are highly needed to confirm the

classical magnetic neutron star model, if any, for the collapsed secon-

dary. More accurate rotational velocities of the primary are needed

to cheek the corotational hypothesis used frequently in theoretical

analysis.

It is intriguing that the properties of the secondary do not fit

satisfactorily to any of the white dwarf, neutron star or black hole

models: The relatively long pulsation period fits more a white dwarf
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but the mass is unlikely to be so; the mass may fit a neutron star

but then the ol'igin of the long pulsation period will have to be ex-

plained. Finally the mass is high enough to suggest a black hole but

the current accepted models of the accretion disk do not allow a

stable pulsation phenomenon. Any of these models, if accepted, will

have to explain the corresponding apparent puzzles.
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STATUS OF THE STUDY oF ELLIPSOIDAL

LIGHT VARIATIONS IN 3U0900-40 AND OTHER

X-RAY BINARIES

ToramAvnl *,+

Center for Astrophysics, Cambridge, Massachusetts, and

Institute for Advanced Study, Princeton, New Jersey 08540**

and

John N. Bahea11

Institute for Advanced Study, Princeton, New Jersey 08540**

ABSTRACT

Implications of recent observations of 3U0900-40 and

other X-ray binaries on the standard picture of e!!ipsoida!

light variations are discussed. "Our estimates of system

the X-ray source in 3U0900-40 is found to be in the range

1.3M0 < M < 2.2 M@. The importance of determining the X-ray
ecllpse d_r_tlon in binary systems is explained. A list of

important observations for testing and utilizing the standard

picture is presented.

i. A--_TRODUCTION

The study of the ellipsoidal optical light curves of X-ray binaries is an

systems. The recent discovery of a 283 s periodicity in the X-ray

intensity of 3U0900-40 (Rappaport and McCllntok 1975a) provided the first

real observational test of the theoretical framework for those estimates

(for a description of the "standard picture" see Avni and Bahcall 1975a).

We predicted, using the standard picture, that the radial velocity of the

X-ray pulsar must be in the range Of 200 to 300 km s -I (Avnl and Bahcall

1975b). The measurement of V sin i by the HIT X-ray astronomy group
(Rappaport and McClintok 1975_, McClintok 1975) has confirmed this

+Talk presented at the Symposium on X-Ray Binaries, Goddard Space

Flight Center, October, 1975

Permanent address: Weizmann Institute, Rehovot, Israel

Research supported in part by NSF Grant No. 40768X
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pred_ctlon, proving the consistency of the theoretical model with observations

for that system. The above determination of the pulsar's radial velocity can

be combined with a recent determination of the optical radial velocity

(van ParadlJs et.al. 1975) and with our analysis to yield the

present estimate for the mass of the pulsar, 1.3 _ M x _ 2.2 Me(2_).

In this talk we first describe our analysis of the 3U0900-40 system (§II);

we then discuss in some detail the Cen X-3 system, which could provide another

_mportant observational test of the model (§III); and we review the status of

the theoretical framework with regard to the other identified X-ray Binary

systems (§IV through VII). In the spirit of this conference, we stress the

observational aspects of the subject and suggest some observations that are

of great importance in determining the masses of the components. We

sun=narlze our conclusions in §VIII.

As a prelude to our discussion of specific systems we first make some general

comments. Mass determinations that make use of the ellipsoidal light curves

are model dependent. They are based on the interpretation that the periodic

component of the light variations is due to the tidal deformation of the

primary in the gravitational field of the secondary. (Some non-trlvlal

intermediate interpretation of the optical observations may be required to

extract the light amplitude associated with the tidal deformation in the

presence of mass motion in the binary system that may create additional

sources of light and of obscuration.) The calculation of this effect is per-

formed by assuming that the star is in a hydrostatic and radiative equilibrium

with respect to the combined gravitational and centrifugal potential (for a

detailed discussion of the standard picture see Avni and Bahcall 1975a,

Avnl 1975b). Hence the importance of testing the theoretical framework in a

number of systems and for a variety of observational aspects. In this talk

we also report (see Avnl and Bahcall 1975b) on a calculation of the color

variations for the Cyg X-1 system that agrees with the recent observations of

Leste_ et.al. (1975). We also describe a study of the 3U1700-37 system, from

which we conclude that the standard picture may be applied also to this binary

in view of the recent redetermination of the eclipse duration with the

Copernicus satellite (Mason et.al., 1975, Mason 1975).

The X-ray eclipse duration (measured by the eclipse half angle 8 ) is an

important parameter that enters the light curve analyses. The s_nsitivlty of

the derived masses to the value of 8 , and the importance of correctly

identifying the value of the photospheric eclipse duration, became evident

as a result of our early work on the Cen X-3 system (Avni and Bahcall 1974).

Apparently longer eclipses can result from absorption e.g. in a stellar wind.

Due to changes in the density of the wind, the observed value of 8 may be

variable. A more detailed discussion of this point will be found _n our

summary of the Cen X-3 system (§III). It would be valuable if X-ray observers

could compile histograms of eclipse durations (and their energy dependences)

for the X-ray binaries. This would help enormously in identifying the

photospheric eclipse more reliably.

The extraction of the amplitude of the elllpsoidal variations from the observed

light curve presents serious difficulties as well. The scatter in the data
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_s larger than the observational error, and is typically a significant

fraction of the full amplitude. This shows that In addition to the under-

lying elllpsoldal variations there exist addltional sources of light and/or

of obscuratlon in the binary system. These perturbations may be in part

phase dependent. Therefore, the amplitude cannot be determined to an

accuracy that is much better than the observational scatter at any given

phase (without using further assumptions on the nature of the extrastatlstical

scatter).

In vlew of the above problems it is quite clear that point estimates ("best

values") for the masses of the components cannot be made at present. Rather,

we calculate and present acceptable ranges for these masses: values that are

consistent with the observational data within their limits of uncertainties

and that are subject to consistency checks as new observational ingredients

become available.

El. AN OBSERVATIONAL TEST: 3U0900-40
I

We analyzed the 3U0900-40 system (Avnl and Bahcall 1975b) making use of the

following observational constraints:

(i) The X-ray eclipse duration is 8 = 3_ to 40 ° . The b-huru measurement was

- _ * 2=(2_ _Forman et.ai, l_/_)---e"and we have allowed for a value smaller

b_ yet another 2o to be prepared for a possible systematic uncertainty in e e
due to absorption in a stellar wind, in analogy with a recent development in

the Cen X-3 system (see §III below). Two new observations of e were reported

in this conference: 8 - 39.8 _ * 0.4 ° (Charles 1975) on the lon_ side, and

6 - 36 ° • 4° (Poundse1975) on the short side, the latter having a somewhat

l_rge uncertainty, but possibly indicating in fact a somewhat shorter eclipse.

(2) The amplitude of the ellipsoldal variations in the V band between

maximum at quadratures and the minimum at phase zero is AA = 0_08 _ 0_02

(Jones and Llller 1973, Vidal et.al. 1973, Petro and Hiltne_'_974). The

scatter in the data is relatively large, and there is a wide dispersion in

the values for the amplitude given by different observers; the range given

above is consistent with all available observations.

(3) The spectral type is approximately B 0.5 Ib (Morgan et.al. ]955). This

gives an effective temperature of T = 22,500°K and a li_d_arkening

coefficient of u = 0.30 (Gingerich _969). In order to estimate uncertainties

in the derived parameters we also have calculated light curves for the extreme

values of T = 20,000°K and T = 30,O0_K and with the extreme slopes of the

llmb darkening functions of u e= 0.20 and u = 0.60.

(4) The optical radial velocity is in the range of 18 to 39 km s -I (Hutchings

1974, Petro and Hiltner 1974, ZuiderwlJk, et.al. 1974, Wallerstein 1974).

Some of the radial velocity curves show large irregular variations and

different velocities for different lines. In some cases they are asymmetric

and formally yield large values for the eccentricity. We have assumed that

the orbit is approximately circular and that the asymmetry and variability are
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mostly caused by instabilities in the observed stellar wind or by other mass

motions in the system. The recent observations by SAS-3 give, in fact, a

rather small eccentricity (McClintok 1975). The optical radial velocity was

very recently redetermined (van Paradljs et.al. 1975) by excluding

the hydrogen lines that causelmost of the variability, yielding

V -t sin i = 19.8 _ 2.4 km s- (2_), and considerably reducing the scatter in
t_ data. The new value is within the range that we have considered.

(5) The mass of the optical primary is i0 < M I < 30 M_. The lower mass limit
is required by stellar models in order to p_oduc_ the _uminosity of a BO

superglant (Giannone et.al. 1968; Kippenhahn 1969). The upper mass limit was

suggested from evolutionary models (Mikkelsen and Wallerstein 1974).

We searched the parameter space for orbital elements and masses that are

consistent with all the above listed constraints. We found that there are no

solutions unless the X-ray pulsar's radial velocity amplitude is in the range

of 200 to 300 km s -I, a strong prediction of the standard picture. This result

did not depend on the actual value of V t sin i: for any given value of

V sin i, within the assumed range, t_ same restriction on V x sin i
f°_owed independently. The MIT measurement of V sin i (Rappaport and

X

McClintok 1975b, McClintok 1975) confirmed our prediction, proving consistency

of the standard picture with observations for the 3U0900-40 system. The new

determination of V sin i neither strengthens nor weakens this observational
o t

test, as the theore_ical limits on V sin i were independent of the value of
x

V sin i within the range considered.
opt

Figure I summerizes the constraints imposed by AA and by e , presenting them

as functions of the inclination angle i and of the mass ra_io Q = M/M I.
We have mapped the Q-i plane with lines of equal e and with lines o_

equal AA, calculated with Roche geometry and with _he star filling its Roche

lobe. Allowing the star to be smaller than the Roche lobe does not add any new

solutions.

-I

Combining the recent values of Vx sin i = 274 • 9 km s and

V t sin i = 19.8 _= 2.4 km s we find from Figure i that i > 70 °. There-
fo°_e we obtain 1.3 < M < 2.2 M_ (2_). The lower limit is thn_ very close to
..... X -- --
the upper mass limit for white "d_ar-_s.

Vidal (these proceedings) has made special assumptions which involve "cleaning"

the optical light curve data and thus obtained an amplitude of 0.ii0 ± 0.015 mag

in the V band. He tries to use Wickramasinghe and Whelan's (1974) analysis

of the light curve to obtain a mass ratio and a range of inclination angles.

However, none of the solutions listed by Wickramasinghe and Whelan are consistent

with Vidal's amplitude, and the minimum value of M obtained by them is 2.3 MS,
larger than the maximum mass Vidal prefers. Vidal_s remarks show that it is

easy to make serious misinterpretations of the analysis of the ellipsoidal light

variations if one is not sufficiently careful.
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_II. CEN X-3: THE NEXT TEST?

The Cen X-3 system may provide another important test for the theoretical

framework, since the radial velocity of the X-ray pulsar is well known

(Schreler et.al. 1972), and the optical radial velocity we predict (-25 km/sec)

is within reach (Osmer e_t.al., 1975). Most of our results for this system are

already published (Avni and Bahcall 1974, 1975a; Avnl 1975 a,b), and we refer

the reader to these papers for numerical details and for the relevant refer-

ences. In view of the special importance of this system for testing the

standard picture, and also because the participants of this meeting may have

been confused by some remarks regarding M made during the Uen X-3 session,

we review the present overall status of t_e ellipsoidal variations.

.The large sensitivity of the allowed range of M to the numerical value of
• X . . .

e , and the importance to the results of the Identlflcatlon of the photo-
e

spherlc eclipse duration, were evident from our early work on Cen X-3 (Avni

and Bahcall 1974), and have been frequently pointed out by us ever since.

Figure 2 demonstrates the numerical sensiti_vlty to e . We have mapped the

mass-ratlo-inclination-angle plane with lines of equa_ 8 and with lines of

equal light amplitude, AA, calculated with Roche geometry and ass_Ing that

the star fills the critical Roche lobe (allowing the radius of the star to be

smaller does not add any new solutions). One can clearly see that at

i = 90 ° , a change of 6 e by i° induces a change o/ i% by -0.3 _

The uncertainty in the identification of the photospheric eclipse duration

stems from the observational facts that the eclipse duration is variable, and

that there are variable, energy-dependent, transition regions. Therefore,

some part of the eclipse is caused By absorption above the photosphere, e.g.

in a stellar wind. [It also has been suggested (Giacconl 1975) that varia-

tions of the intensity of the wind are responsible for the extended low states

in the X-ray intensity.] The best observational estimate for the photospheric

eclipse duration is therefore the shortest eclipse ever observed. This _s

now 40" according to Uhuru observations (Schreier 1974) or 39 ° • 2 °

according to recent Copernicus results (Pounds et.al. 1975). If X-ray

observers provide enough observational material on the systematics of the

occurances of eclipse durations and their energy dependences, model-dependent

evaluations of 8 (photospheric) may be attempted.
e

The light amplitude presents yet another problem. Two independent observations,

one by Krzeminski (1974) and the other by Petro (1975), yield amplitudes
m . m

_=0.075 with an uncertalnty of about 0.02, and with the minimum at phase

0.5"_elng deeper than the minimum at phase 0.0, as expected from the standard

picture. These two observations are consistent with the theoretical model

and yield the range of masses that we discuss below. Mauder (1975) however

observed an amplitude of 0_14 (no errors quoted), with the two minima being

equal to each other. Such a behavior is inconsistent with the standard picture.

Mauder has argued that the equality of the minima indicates the absence of

X-ray heating on the facing side of the primary. But this cannot be the

explanation because two equal and deep minima actually indicate an appreciable

heating effect (Avni and Bahcall 1975b, Avni 1975b). It is also in apparent

contradiction with the observed small value of $ /_ __ in this system (one
O

estimates the amount of X-ray energy falling on t_e o_ical star is only

"10 -3 L _). The data of Mauder, therefore, cannot be used per se in

quantitative estimates, with the standard picture, of the masses in Cen X-3.
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The observational situation with regard to AA clearly calls for further work

in order to clarify the above discrepancy. One would llke to know whether the

source of the trouble is purely observational, or whether real changes are

taking place in the system. In the latter case, a systematic study of the

variability will help to decide what is the amplitude that should be

associated with the tidal deformation.

On the basis of the observations of Krzemlnskl and of Petro (and their

uncertainties), and using the present observational estimates for Be, namely

m o o

8e 37tO 40 , we deduce from Figure 2 that M = 0.6 to 1.8 M@, with Roche
geometry. At present there is no need to invok_ higher masses. Higher

masses will become necessary only if future observations give a shorter

eclipse duration and a light amplitude larger than 0T09.

In our earlier paper (Avnl and Bahcall 1974) we studied also the implications

of using the "tidal lobe" (i.e., no rotation of the primary) instead of the

Roche lobe. The lines of equal 8 as well as the lines of equal AA move

upward in the Q-i plane when the _oche geometry is replaced by tidal geometry.

Therefore, the range of masses shifts to larger values, and the lower mass

limit for Wro t = 0 is I.I M@.

Similarly, if the rotational angular velocity of the primary in the 3U0900-40

system is decreased by a small amount from tha$ required for corotation, then

M is underestimated when corotation is assumed. Vidal (these proceedings)

c_aims that M in 3U0900-40 is overestimated if corotation is assumed. He

failed to tak_ account of the fact that for 3U0900-40 one knows both an

approximate optical radial velocity and a more accurate X-ray radial velocity.

We wish to stress at this point that the rotational angular velocity (i.e.,

Roche vs. tidal geometry) is not directly correlated with the mass-loss

mechanism (critical lobe overflow vs. stellar wind). Therefore, stellar wind

models can be consistent with corotation and Roche geometry, and do not imply

the larger masses that correspond to the tidal geometry.

An observation of crucial importance is the determination of the optical _adial

velocity. Osmer et.al. (1975) have suggested an upper limit of _50 km s-- for

the velocity amplitude. We believe, however , that due to the small number (6)

of data points their limit may be too optimistic. Their observations never-

theless show that a determination of V sin i (or at least of a useful limit)

is close to being achieved, we predic_P_ _ sin i to be between -15 and

40 km/sec using the standard picture, wit_P_he present determination of 8 .

A measurement of the optical radial velocity will give directly the mass e

ratio (or a limit on it). It will yield valuable information on the masses

of the components, even without recourse to theoretical estimates, in

addition to providing an important test for the standard picture.

IV. CYG X-i

The principal result of our initial study of the Cyg X-i system (Avnl and

Bahcall 1975a) is that .the range of possible masses for the secondary is

8 to ~15 M^, significantly wider than what had been claimed before. The main

reasons for this difference is a fuller and realistic allowance for observa-

tional uncertainties and a more complete survey of parameter space.
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We have recently tested our solutions by calculating color vairations. We

find ellipsoidal color-curves in B-V and in U-B with an amplitude of ~OTO02,

with the star being redder at the light minima (Avni and Bahcall 1975b). This

is consistent w_th new data of Lester et.al. (1975) who find a similar

amplitude with the same sense.

A further consequence of our early work is that the optical light curve cannot

help to distinguish between the binary model for the system and the triple-

star model. In the optical continuum, a normal secondary that contributes

2% to 25% of the blue light cannot be distinguished from a black hole because

the two reflection effects _n the optical primary and secondary) are roughly

equivalent to a small change in AA, without a noticeable change in the

ratio of t_e two minima. _e also showed that the effect of most such normal

secondaries on the spectral lines _s too small to be Visible on a single

spectrum Because of photon noise. We suggested, therefore, that one could

test for the presence of such secondaries by combining llne profiles from a

number of observations taken all at the same orbital phase, and search for

systematic variations as a function of the orbital phase. A preliminary study

along these lines was recently taken up by Bolton (1975) who claims to rule

out some, but not all, of the possible normal companions. It is important to

conduct a systematic study of this sort, In order to derive realistic

constraints on the triple star model.

Observationally, it is also desirable to clarify the situation with regard to

the conflicting light amplitudes found by Walker (1975, and references quoted
m

therein): 0.04, and by Lester et.al. (1975, and references quoted therein):

0_06. If these results indicate real changes in the system, one would like to

know the systematics of these changes.

V. 3U!700-37

The original Uhuru determination of the eclipse duration (Jones et.al. 1973b)

........................... 1 ........ # .....................

are inconsistent wit_ the observed amplitude of the optical light curve

AA o (v) = 0m05 ± 0m01, and in any case requires that M > 100 M^ when
details see _ahcall 1975,combined with the observed optical mass function (for o t --

Avni 1975b). In view of the possibility that the intense stellar wind

observed in this system is responsible for a significant part of the eclipse

duration, we have recently analyze d the light variations (Avni and Bahcall

1975b) in order to put limits on the length of the photospheric eclipse that

are implied by the standard picture. We found that M /M _ must be > 0.025
O E

and that e must be < 46 °. Recent Copernicus observa_ion_ (Mason et.al. 1975,

Mason 1975_ yielded a short eclipse with 8 = 47 ° _ 3 @ . Therefore the

theoretical model is consistent also with o%servations for this system. In

fact, one may regard the shorter Copernicus ecliPse duration as a verification

of a prediction from the standard picture.
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VI. SMC X-i

The special interest in this system stems from the fact that the large X-ray

flux that heats the facing side of the primary modifies significantly the

elllpsoidal light variations and reverses the ratio between the two light

minima (Avni and Bahcall 1975b). We have shown that the consideration of this

effect is important in deriving the masses of the components, and that the

resulting mass ratios are Q = 0.i0 to 0.17.

From our analysis it followed that the X-ray luminosity L must be approxl-

mately equal to the optical luminosity L t" A recent re_etermination of both

L and L _ using the most up-to-date InfOrmation on the X-ray spectrum and
x th oon e ra_us of the optical primary (Avni 1975b) has confirmed this

prediction.

We have also shown Okvni 19755) that if the primary is assumed to approximately

fill the critical Roche lobe, the masses of the components are determined from

the radius of the primary and from the optlca_ radial velocity amplltude. With
R_ - 18.6 R_ and V sin i - 30 to 50 km s we obtain M = 2 to 4 M^. When

b_tter estimates fo_P_, and V sin i become available, r_fined estimates can

be made form x by scal_ng M _e RI3 and by scaling Vop t sin i like R I.

Observationally, an improved determination of V sin i is clearly needed.

Also, SMC X-I is known to have extended low sta_ (as observed from Earth).

Since X-ray heating has a visible effect on the optical light curve, it would

be very interesting to conduct simultaneous X-ray and optical observations in

order to test whether the ratio of the two minima changes together with the

X-ray flux. We admit that this is not an unambiguous test of the model,

because the X-ray emission need not be isotropic (note the 35 d behavior of

Her X-I), and because even without X-ray heating there seems to be a large

variability in the ellipsoidal light curves.

VII. HER X-I

The available data , from historical plates, on the ellipsoidal variations of

HZ-Her in its extended low states (Jones et.al. 1973a; Liller 1975) is not

precise enough toyleld significant constraints on the masses in this system

(Avni and Bahcall 1974, cf. Whelan 1973).

When HZ-Her next goes into an extended low state, accurate data on the

ellipsoidal light curve may be collected, in several colors, and the optical

radial velocity will be hopefully unambiguously determined. These observa-

tions will provide a powerful test of the theoretical model of ellipsoidal

variations, and will place strong constraints on the masses of the components.

VIII. CONCLUSIONS

We have reviewed the status of the theoretical framework used to determine

the masses of the components in X-ray binaries, with the aid of elllpsoidal

light curves. We have described the numerical sensitivity of the derived

masses to the value of the X-ray eclipse duration and the uncertainty in the
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identification of the photospheric eclipse. An intensive observational study

of the systematics of eclipse durations and their energy dependences is

_equlred in order to eliminate this uncertainty, to make the mass estimates

more precise, and the observational tests more powerful. We have also

described the scatter in the values found for the light amplitudes and the

implications that this uncertainty has for the masses.

The present situation is sunnnarized in Table 1 for the six binary systems for

which an analysis can be attempted. For all of the six systems we have found

sets of parameters that are consistent with the standard picture and with all

observational constraints available at present. In particular, theM IT

measurement of V sin i in the 3UO900-40 system confirmed a predlct_on that

had been made onXthe basis of the standard picture. Also, a recent re-

determination of the eclipse duration in the 3U1700-37 system is consistent

witkllmltS on _ that have been der_ed from the model. The color variations

calculated for t_e CFE X-I system are also consistent w_th recent observations.

Observational tests for the standard picture are of great importance since the

mass determinations are model dependent. A potentially strong test would be a

measurement of V + sin i in the Cen X'3 system, within the reach of presento
observational techniques.

Additional observations of _nteresc would be _lmulL_,eou& optical Z-ray

observations of SMC X-I in order to test the effects of X-ray heating on

the optical light curve, and measurements of the elllpsoidal light curve and

optical radial velocity of HZ-Her when it next goes into an extended off state.
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Figure 1.
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INCLINATION

A mapping of the q-i plane with lines of equal e and with lines ofe

equal &Ao. ° for 3U0900-40 with Roche geometry and Ropt/Rcrit ffii.

Here Q is the mass ratio Mx/Mop t and Ropt/Rcrit is the ratio of

the radius of the optical star to the critical Roche radius.

Solid lines: T e = 22,500 ° and u = 0.3; dotted line: T e = 20,000 °

and u - 0.6; solid-dotted line: T e = 30,000 ° and u = 0.2.
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equal AAo. ° for the Cen X-3 system, with Roche geometry and Ropt/Rcrit = i.

Here Q is the mass ratio Mx/Mop t and Ropt/Rcrit is the ratio of the

radius of the optical star to the critical Roche radius. Solid llne:

T = 30,000 ° and u = 0.3; broken line: T = 20,000 ° and u = 0.45.
e e

The masses denoted on the right margin are for i = 90 ° only.
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THE X-RAY VARIABILITY OF VELA X-I (3U0900-40)

P. A. Charles, K. O. Mason, J. L. Culhane, P. W. Sanford, N. E. White

Mullard Space Science Laboratory

University College London

Holmbury St. Mary

Dorking

Surrey

England

Abstract

From observations of Vela X-i with the MSSL 2.5-7.5 KeV detector

onboard Copernicus, we note that the behaviour of the source can be

characterized by three phases: (a) high intensity, (b) low intensity,

(c) eclipse. Combining data from the 1972 UHURU observations with

o,!r eclipse observation yields a binary period of 8.963 +0.001 days

with zero phase on 1975 Feb. 6.97 + 0.04 UT. All our data is modulated

by a period of 282s.896 + 0_030 (mean phase = 0.47) with a mean amplitude

of 20-30%.

_he low intensity phase is interpreted as being due to increased

absorption in an accretion wake traveling across the line of sight (the

spectral slope remains relatively constant throughout the cycle).

Another period of enhanced absorption immediately after exit from eclipse

may be due to a bow shock.

Comparison of our two observations suggests that these structures vary

from cycle to cycle and, since the orbital period is long, probably

during each cycle.
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Introduction

The binary nature of the X-ray source 3U0900-40 (Vela X-I) was first

noted by Ulmer et al (1972) with the UCSD OSO-7 X-ray telescope and

has subsequently been observed by UHURU (Forman et al, 1973), Ariel 5

(Eadie et al, 1975) and OSO-7 (Ulmer, 1975). Another interesting

facet of this source has very recently come to light with the

discovery by SAS-3 (Rappaport and McClintock, 1975) that the source is

pulsing with a period of 282.9 sec. By combining this information

with detailed radial velocity observations of the optical counterpart

HD77581, Paradijs et al (1975) derive masses of 1.6 + 0.2 M and
-- 0

21 + 2 M8 for the components of the system.

The overall features of this source have been discussed by the above

mentioned authors. It was, then, with a view to obtaining detailed

information on the X-ray behavior during individual cycles that we

observed Vela X-I with the Copernicus X-ray instrumentation in February

and again in May 1975.
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Observational Details

The MSSL X-ray instrumentation has been discussed by Culhane et al

(1975 - this conference) but briefly these observations were performed

with a detector sensitive in the energy range 2.5-7.5 KeY equipped

with a 6 channel pulse height analyzer (PHA) for spectral information.

The geometrical area is 18 cm. 2, field of view is 295 x 30.0 (FWHM)

and temporal resolution 62.5 secs. (i frame). A more detailed

description of the experiment and satellite can be found in Bowles

et al (1974) and Hawkins (1974). The background counting rate is

evaluated and removed as discussed by Sanford (1974) and Davison (1974) o

in Table i. The basic observed counting rates (summed in 5 frame bins)

on each occasion are presented in figures la and 2a. We also display

the variation of the spectral hardness ratio (when the statistics

warrant it) as defined by -

._ KeY
i (E)2_

H.R. = _ 5 KeY

_ 5 KeY• i (E)

E = 2.5 KeV

where the I (E) are the PHA count rates. It is immediately apparent

from these diagrams that 3U0900-40 can be characterized by three phases:

(a) "high intensity", for approximately half the cycle, during which

time intensity variations are not mirrored by the hardness

ratio plot; in particula_ flares, such as that on day 138.6 where

the flux doubled on a time scale of a few minutes, show no signifi-

cant spectral changes. This behaviour is similar to that of
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Observational Details (Cont)

flares in 3U1700-37 (see Mason et al, 1975 - this conference)

although they occur more frequently in that source, and

dissimilar to those seen during active periods in Sco X-l,

during which the source intensity is strongly correlated with

spectral slope (see Culhane et al, 1975 - this conference, and

White et al, 1975).

(b) "low intensity", again for approximately half the cycle, where

the behavior of the hardness ratio implies the presence of

significant absorption by cold material (hardness ratio increases

for increased absorption);

(c) "eclipse", lasting for id.98 + 0d.04.

To investigate these variations in more detail we summed the data in

4 h bins so as to improve the statistics and fitted each one with

standard power law X-ray spectra by means of the chi-square grid

technique. All the data are well fit by _ = 1.0 (it was impossible to

differentiate between power law and thermal spectra) together with a

variable absorption term. This is illustrated in Figures ib and 2b

which show the sun,ned data and the absorption column required to fit

the data assuming a constant spectral slope. We have also plotted on

Figure ib the level expected (dotted lines) if there had been no

(photo electric) absorption. The mean "low intensity" level is still

lower than the mean "high intensity" level and indicates that some

non energy dependant absorption may be taking place.
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Observational Details (Cont)

By assuming that the period has remained constant since the 1972

UHURU observations, our mid-eclipse times yield a period of 8.963

+ 0.001 days with zero phase on 1975 Feb 6.97 _ 0.04 U.T. This is

in excellent agreement with the period as determined optically

(Paradijs et al, 1975). The measurements we have made of the 282.9

second period (Table 2) agree well with those given by sAs-3.

Interpretation

The first point that is clear from a comparison of Figures 1 and 2

i_ that any structure or spectral feature in the light curve is

variable from cycle to cycle and probably, owing to the long binary

period, within each cycle.

The light curve of the February 1975 cycle shows spectral structure

(in terms of the column variations) that we interpret as being due

to passage of the X-rays through an accretion wake. The existence

ef an accretion w_ in binary X-ray sources has now been established

by a number of workers for the Cen X-3 system (Giacconi, 1974; Tuohy

and Cruise, 1975; Pounds et al, 1975) and for the purposes of this

discussion we shall use the sketch of the system in Figure 3. The

points to note are:

(i) the increase in absorption at phase 0.55 and the decrease at

phase 0.85; this represents the boundaries of the accretion shock;

(2) the intermediate decrease in absorption at phase 0.7;

(3) the additional absorption dip around phase 0.15, almost exactly

180 ° in phase away from the accretion axis.
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Interpretation (Cont)

Theoreticalstudiesof the accretion process (Hunt, 1971; Jackson,

1975) show that material will fall in to the X-ray source leaving a

line of relatively low density along the accretion axis itself.

Also, in certain circumstances material may accumulate on the

opposite side of the X-ray source to the accretion axis, giving rise

to absorption along this line of sight (Eadie et al, 1975). Inside

this wake the electron density may be high enough to provide the

non energy dependant scattering visible in the light curve as mentioned

earlier. Therefore this model accounts in a general way for most of the

observed features of this source.

Using the orbital velocity of approx. 270 km. s -I from the solution of

Rappaport and McClintock (1975) we may combine this with the implied

angle of 70 ° between the accretion axis and the line of centers to

derive an upper limit to the stellar wind velocity in the vicinity of

the X-ray source of about i00 km. s -I.

The May 1975 lightcurve, although mainly of the high intensity phase,

shows that this wake (if, indeed, the above interpretation is correct)

is variable over many cycles.

Further studies of this system at both X-ray and optical wavelengths

should permit a more detailed definition of both the accretion process

and the nature of the stellar wind of the companion star.
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TABLE 1. OBSERVATIONS

Date Start Date Stop

i. 1975 Feb 1 1975 Feb i0

2. 1975 May 17 1975 May 22

TABLE 2. SHORT PERIOD ANALYSIS

Feb. 75 May 75 Mean

P sec. 282.9154 282.87657 282.896

error 0,0396 0.045 0.030

sample s.d. 0.198 0.130 ~

mean phase 0.55 0.38 0.47
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Figure 3.

!'= 75

Rough outline of the Vela X-i binary system (primary shown too

small, for clarity) showing the accretion shock & wake around the

X-ray source. The phases of the observer are also displayed.
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MASS DETERMINATION FOR THE X-HAY BINARY SYSTEM

VELA X-I ( = 3U 0900-443 )

J. A. van Paradijs, O. Hammerschlag-Hensberge,

E. P. J. van den Heuvel, M. J. Takens, and

E. J. Zuiderwijk

Astronomical Institute

University of Amsterdam

Amsterdam, The Netherlands

and

C. De Loore

Astrophysical Institute

Vrije Universiteit Brussel

Brussels, Belgium

ABSTRACT

From a radial velocity study of lines of He I and the

heavier ions of HD 77581 (:Vela X-l) we derive orbital

elements for this X-ray binary system. Together with the

orbital elements _iven by _appaport and McClintock from

X-ray Pulsar results, this enables us to determine masses

for both the X-ray and the early type supergiant component :

Mx = 1.61 _ 0.22 M0 and Mop t = 21.2 _ 2.4 MO, respectively.

INTRODUCTION

The 6.9 ma_ B0.5 Ib super_iant HD 77581 has been identified

as the optical counterpart of the X-ray eclipsing binary

system 3U 0900-40 (Vela X-I) (Hiltner et al., 1972; Jones et

al., 1973; Vidal et al., 1973). The system shows X-ray

eclipses with a period of 8.95 _ 0.02 days (Forman et al.,

1973). Rappaport and McCllntock (1975) recently reported the

discovery of regular X-ray pulses in Vela X-I. The mean pulse
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period of 282.9 sec is periodically modified due to the

radial velocity variation of the X-ray pulsar in its orbital

motion. This makes Vela X-1 the third X-ray binary system in

which the orbits of both the optical and the X-ray component

can be studied. From an analysis of velocity variations of

the X-ray pulsar Rappaport and McClintock (1975) derive the

followin_ orbital parameters : e X = 0.15 _ 0.05,{JX = 157° _

24 ° and KX = 268 _ 12 km/s.

The two other eclipsing binary systems containing an X-ray

pulsar (Cen X-3 and Her X-I) present severe difficulties to

a standard analysis as a double lined spectroscopic binary.

In Her X-!, the heating effect on one part of the optical

component due to the proximity of the X-ray source makes an

unambiguous interpretation of the radial velocity variations

of the optical component difficult (Crampton, 1974; Bahcall

et al., 1974). In Cen X-3 the radial velocity variations are

difficult to determine, as the optical counterpart is very

faint (Krzeminski, 1974) and its lines are extremely broad

and weak (Osmer et al., 1975).

Analyses of the light curve of HD 77581 have shown that the

heatin_ effect is too small to be detected (Jones et al.,

1973; Mil_rom and Salpeter, 1975). Furthermore, the star is

bright and the spectral lines are not extremely broad. This

makes the Vela X-I system at present the only one for which

for the first time a relatively accurate direct mass determ-

ination of both the X-ray and the early-type supergiant

component is feasible."

Earlier studies of the radial velocity variation of HD 77581

have given discrepant results (Zuiderwijk et al., 1974;

Hutchings, 1974; Wallerstein, 1974). For the semi-amplitude

K of the orbit values ranking between 19 and 40 km/s have

been derived, and values for the eccentricity ranging from

0.00 to 0.54 have been given. According to Wallerstein (1974)

the radial velocity data of HD 77581 do not allow a consist-

ent solution of the orbit, due to mass transfer in the
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system. In this paper we showthat a consistent solution can
be obtained, however, provided that the lines of hydrogen
- expected to be most sensitive to gas motions in the system-
are excluded from the analysis.

OBSERVATIONSANDREDUCTIONS

The present analysis of the radial velocity variations of
HD77581is basedon 26 coud&spectrograms, obtained with the
152 cm telescope of the EuropeanSouthern Observatory, La
Silla, Chile, during 4 observing runs betweenApril 1973and
June 1975. The spectra have beentaken on IIaO emulsion, and
cover the wavelength re_ion from 3600to 4950_. The dispers-
ion of the plates is 12 _/mmor 20 _/mm.The plates obtained
_,:_in_ hh_ firth nb_e_vin_behind hsv_ been _nslv_d D_evinne-
ly (Zulderwijk et al., 1974), but have been remeasured
independently for use in the present analysis. The observations
are distributed evenly over the entire orbital cycle. The
spectra were measuredfor line positions with the Grant
Comparatorof the Kapteyn Astronomical Laboratory of the
University of Groningen. All absorption features visible in
the spectrumwere measured,without selecting beforehand a
particular set of lines. In this way somevery weaklines
were missed on someplates, on the other hand especially for
the weak lines it wasconsidered to be an advantage to measure
without a predetermined expectation of where the lines should
be found. The wavelengths were determined by meansof a
dispersion curve of the third degree, obtained from the iron-
arc comparisonspectrum. After this the identifications were
madeusing the Revised Multiplet Table (Moore, 1945). Lines
of H I, He I, 0 II, N III, NII, Si III and Si IV are present
in the measurementsof at least half of the spectra.
From the measurementsof the radial velocity of the inter-
stellar Ca II K-line we find Vca II = 16.1 _ 0.6 (m.e.) and
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13.7 _ 1.0 km/s for the 12 _/mm and the 20 _/mm spectra,

respectively. In order to increase the homogeneity of the

data we have reduced the measurements of the 20 _/mm plates

to the 12 _/mm system, by applying the correction of 2.4 km/s.

In order to have an impression of the internal accuracy of

the present measurements five plates were measured twice. The

differences in the mean velocity as obtained from two such

measurements of one plate vary between 0.3 and 4.2 km/s;

the standard deviations from the mean per line for one plate

vary between 8.0 and 11.5 km/s.

In the analysis we have used mean values of the radial

velocity as obtained from the He I lines and from the lines

of heavier ions. These average radial velocities are given

in Table i. A full table of all individual line radial veloc-

ity measurements will be published elsewhere.

With the computer program "Orbit" based on a program of

Wolfe et al. (1967) the best fitting radial velocity curve

through the points was computed. This was done for all lines

of He I and the heavier ions together. Also separate solutic_s

for the He I lines and the heavier ion lines were made. The

radial velocity measurements were weighted according to

i/@_,_ where _i is the standard deviation of the mean ofw i

the measurements. The average orbital period P determined in

these solutions equals 8.966 ± 0.005 days. This agrees well

with Hutchings' (1974) result (P = 8.966 _ 0.001 days), based

on radial velocity determinations by several observers, over

a time interval of 17 years. We have therefore subsequently

made new orbital solutions with the period P = 8.966 days as

a fixed parameter. These orbital elements, as derived from

all lines together - except the hydrogen lines - are presented

in Table 2. The best fitting radial velocity curve is shown

in Fig. i. The separate solutions for He I and the heavier

ions are in good agreement with the mean solution (see

Table 2 and Fig. 2 and 3). We have also made solutions for

646



individual lines of heavier elementswhich are somewhatless
accurate, but consistent with the solution for all the lines
together. Fig. 4 showsclearly that no consistent orbit can
be obtained from the hydrogen lines. Therefore, those lines
should be omitted in future attempts to determine orbital
elements for this binary system.

DISCUSSIONOFTHERESULTS

The values for the orbital parametersderived here are in
good agreementwith the X-ray pulsar data, which for conven-
ience are also given in Table 2. In particular the values of
the eccentricity and the angle of _._o-_=o*_.-._.v-,which should be
180° apart for the optical and the X-ray solution, agree well

a_reementlends confidence to the orbital character of the
optical radial velocity variations; the non-orbital (gas-
streams, stellar wind fluctuations) componentdoes not seem
to be very important for the results from He I and heavier
elements. Wefind the following values for the systempara-
meters :
m_ r_t_o : M ./M_ = (a,_/a.... ) = 13.2 + 0.9op_ A _ up_

total mass : (Mop t + M x) sin3i = 21.5 Z 2.2 M O

= _ sin3i = 20.0 + 2.1M@.MX sln3i 1.52 + 0.19 M@ and Mop t

From a detailed analysis of the optical light variations,

Avni and Bahcall (1975) have found that the inclination i

should be higher than 74 ° , in order to get a consistent

picture of both the observed light curve and the X-ray

eclipse duration. Takin_ 74 ° and 90 ° as lower and upper

limits of the inclination angle we get

M X = 1.61 _ 0.22 M@ and Mop t = 21.2 _ 2.4 M@.

This result shows that the compact component is very probably
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too heavy for bein_ a white dwarf.

If it would be a white dwarf - its evolutionary history

implies that it should consist mainly of carbon and oxygen

(van den Heuvel, 1974, 1975); the upper mass limit for such

white dwarfs is around 1.4 M 0 (Hamada and Salpeter, 1961).

Its most probable mass of 1.61M 0 is just consistent with

the presently allowed theoretical masses of neutron stars

(M _ 1.6 M0) (Cameron and Canuto, 1974). The mass determin-

ation of the supergiant allows a test of the theoretically

computed evolution of massive stars through a comparison

with theoretical evolutionary tracks, the luminosity of

HD 77381 can be inferred in two ways. The spectral type and

luminosity class (BO.5 Ib) provide in principle the absolute

magnitude My, bolometrlc correction BC and effective

temperature Tef f. Usin R the luminosity calibration of Blaauw

(1963) or Keenan (1963) we derive M v = -5.9 _ 0._ mag. For

the bolometric correction values between 2.4 and 2.6 mag

have been _iven (Morton and Adams, 1968; Schiesinger, 1969).

This _ives Nbo I = -8.4 _ 0.5 maR. For the orbital parameters

_iven here and by Happaport and _icClintook (1975) and assuming

a minimum observed eclipse angle of 34 ° Avni and _ahcall (1975)

derive for the radius of HD 77581H = 30 n0" For the effective

temperature values ran_ing from 22000 h (Osmer, 1973) to

29000 K (Auer and Mihalas, 1972) have been given for early

B-type super_iants. AdoptinK Tef f = 25000 ! 4000 h we find

Mbo I = -9.0 _ 0.75 maR.

From a comparison with evolutionary tracks (Simpson, 1971;

Stothers, 1972) we then find the following values of the

evolutionary mass : M/M 0 : 22 _ 7 and 30 _ 10, respectively;

these values, although not very accurate, are consistent with

the presently determined value of 21.2 _ 2.4 MG. Therefore,

the early type super_iant in this X-ray binary system does

not seem to show signs of bein_ particularly undermassive

for its spectral _oyp_ (as has been suggested by some authors

for some of tk_e X-ray binaries, partic[_larly, Cygnus X-I
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(Trimble et al., 1973)).
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Table I. Journal of Observations.

plateno. JD2440000+ phase x Vrad(km/s ) m.e.

G3834 1773.626

G3842 1774.608

G3848 !775.582

03858 1776.583

G3866 1777.613

G3879 1779.535

G3896 1780.632

G3909 1781.631

G3923 1782.556

F1684 2169.522

F1694 2170.522

F1702 2171.477

F1709 2173.593

F1717 2174.581

F1727 2175.594

F1739 2176.559

F1750 2!77.492

F1765 2180.463

06480 2439.647

G6491 2440.710

G6497 2441.734

G6505 2442.684

G6511 2443.658

G6519 2&44.729

F3116 2560.509

F3124 2566.531

1480 I 8.64 7"79

590 -18.02 3.18

699 -22.03 3.22

810 -Ii.00 3.36

925 - 7.72 4.14

139 +16.74 5.24

262 +13.85 3.35

373 - 2.37 3.11

476 -20.48 3.51

636 -32.65 3.33

747 -26.57 3.46

854 -14.37 4.06

.090 + 5.68 5.52

200 +14.16 4.58

313 - 3.27 4.94

421 -13.00 6.06

525 -!1.60 6.31

856 -12.23 7.00

763 -27.27 4.80

882 -23.62 6.72

996 - 8.92 3.82

102 +12.98 4.23

2!I +22.75 5.54

330 + 3.80 3.72

243 + 1.18 5.44

915 -18.34 4.19

O-C

+ 8.OO

+ 4.77

+ 1.76

+ 9.25

+ 3.93

+ 3.11

+ 2.68

+ 2.18

- 4.18

- 8.88

- 3.76

+ 3.25

- 2.80

-139

-756

-236

• 8 22

+523

-49_

- 8.12

- 5.24

+ 3.o3

+ 7.51

+ 2.08

-11.90

- 5.73

Xphase zero corresponds to mid-eclipse time JD2441446.54 +

n x 8.966 day.
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Table 2. Orbital elements for HD 77581 = Vela X-I

Optical Observations X-ray Pulsar

Mean values He I heavier ions

for He I

and heavier

elements

P 8.966 8.966 8.966 8.96 day

V o -7.97+_0.82 -8.45_+0.64 -7.16_I.O6 km/s

K 19.81_1.19 20.54_+0.99 21.19_1.42 268d12 km/s

e 0.20+_0.06 0.23+_0.04 0.22_+0.07 O.15_+O.O5

_) IO°_17 ° 18°_11 ° 2°_19 ° 157°_24 °

asini 2.4+_0.2xi06 2.5_+0.IxlO 6 2.6_+0.2xi06 3.3_+O.ixlOTkm
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VELA X-I AND NEUTRON STAR ORIGINAL SPIN

D. Q. Lamb and F. K. Lamb t

Department of Physics

University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

and

W. D. Arnett

Department of Astronomy

University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

ABSTRACT

Usually it is assumed that neutron stars are forme_

spi9ning rapidly, with rotation periods as short as i0 -

i0- _s. In contrast with this picture, we propose that

neutron stars are born with a wide range of initial

rotation periods, some very long. Increasing observational

evidence supporting this hypothesis includes the lack of

correlation between pulsar spindown time scales and inferred

distances from the galactic plane, and the detection of long

period pulsating X-ray sources. We examine transfer of

angular momentum from the degenerate core to the envelope

of neutron star progenitors as one example of the ways in

which suchslowly spinning neutron stars might be formed.

We discuss several implications of our suggestions.

This research was supported in part by the NSF under grants

MPS75-08790, MPS74-20755 and by the A. P. Sloan Foundation.

tAlfred P. Sloan Foundation Research Fellow
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AN X-RAY DETERMINATION OF THE ORBITAL ELEMENTS OF 3U0900-40

J. McClintock, P.C. Joss, and S. Rappaport

Center for Space Research

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

ABSTRACT

We have determined the orbital elements of the 3U0900-40

binary system by measuring the variations in the arrival

times of the 283-second X-ray pulses. The best-fit

values of the system parameters and their 95% confidence

limits are listed in Table I.

I. INTRODUCTION

On 18 June 1975 we discovered a 283-second periodicity in the X-ray

intensity of 3U0900-40 = Vela X-I (Rappaport and McClintock 1975), making

it the third periodically pulsing X-ray source in an eclipsing binary

system. The two other objects in this class are Centaurus X-3 (pulse

period P = 4_8; Giacconi et al. 1971; Schreier et al. 1972) and Hercules

X-I (P = I_24; Tananbaum et al. 1972). In addition, there are two pulsing,

"transient" sources which have not been observed to have an eclipse cycle,

and are not known to be in binary systems: A0535+26 (P = 104 s; Eyles

et al. 1975) and AII18-61 (P = 6.755 min; Ires et al. 1975).

II. OBSERVATIONS

The data were obtained using two proportional-counter detectors aboard

the third Small Astronomy Satellite, SAS-3. The argon-filled detector

has an effective area of 80 cm 2 and has three energy channels: I-3 keV,

3-6 keV and 6-12 keV. The xenon-filled detector has an effective area of

115 cm 2 has four energy channels: 8-19 keV, 19-30 keV, 30-39 keV and

39-55 keV. The detectors view out along the azimuthal scan circle of the

spacecraft through coaligned, 1.7 ° FWHM collimators. The data were recor-

ded at 0.42 second time resolution. The SAS-3 observatory was operated

in a pointed mode so that 3U0900-40 was nearly centered in the field of

view of the detectors throughout each orbit. A more detailed description

of the SAS-3 observatory and the two detectors is given elsewhere (Bradt

et al. 1975).

During the non-earth-blocked portion of each satellite orbit, 3U0900-40

was observed continuously, netting about 3000 seconds of observation time

per orbit. The discovery of the 283-second pulse period occurred during

an observation on June 18 _igure I). Subsequently, we performed two

extended observations during the intervals June 18.8-24.2 and July 19.3-
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25.3 UT. Both observation intervals combined yielded a total of 35 satel-

lite orbits of data which had a sufficiently good signal to noise ratio to

be useful in determining the orbit of the X-ray star.

III. ORBITAL PARAMETERS

We folded the counting rate data for each satellite orbit separately,

using an approximate pulse period of 282.9 seconds. For each orbit of

data we determined the time of arrival of a fiducial feature in the

pulse shape. We then carried out a minimum X 2 fit to the 35 observations

of pulse arrival time in June and July 1975. In performing the fit, we

weighted the observations by the relative accuracy to which the arrival

times could be measured. The fit had six free parameters: the helio-

centric pulse period (P), the zero-point of pulse phase, the projected

orbital amplitude (a x sin i), the orbital phase, the orbital eccentricity

(e), and the longitude of periastron (m). The orbital period (Porb) is

not well determined by our data alone; we therefore fixed the orhital

period at the value of 8.9625 days, which is accurate to within an

uncertainty of ±0.005 days (Li 1975). The results of our fit are listed

in Table 1 and illustrated in Figure 2.

From our fitted value of a x sin i, we obtain a mass function of f(M) =

18.7 ± 1.6 MQ (95% confidence). Unfortunately, optical observers

(Wallerstein 1974; Hutchings 1974; Zuiderwijk, van den Heuvel, and

Hensberge 1974; van ParadiJs et al. 1975, 1976) have obtained widely

varying results for the projected orbital velocity of the companion

star, HD 77581. It is critically important to refine these measurements

and to gain a better theoretical understanding of variations of optical

radial velocity with time and among different spectral lines, in order

to establish an accurate value for the mass of the X-ray star.

We are grateful to the members of the SAS-3 group and to the many per-

sons who have contributed to the successful fabrication, launch, and

operations of SAS-3. We thank the staffs of the Laboratory for Space

Experiments and the Center for Space Research at M.I.T., the Applied

Physics Laboratory of Johns Hopkins University, the Goddard Space

Flight Center, and Centro Ricerche Aerospaziali.

662



REFERENCES

Bradt, H., Mayer, W., Buff, J., Clark, G.W., Doxsey, R., Hearn, D.,

Jernigan, G., Joss, P. C., Laufer, B°, Lewin, W., Li, F.,

Matilsky, T., McClintock, J., Primini, F., Rappaport, S., and

Schnopper, H. 1975, Submitted to Ap. J. Lett.

Eyles, C. J., Skinner, G. K., and Willmore, A. P. 1975, IAU Circ.,

No. 2787.

Hutchlngs, J. B. 1974, Ap. J., 19_2, 685.

Ives, J. C., Sanford, P. W., and Bell Burnell, S. J. 1975, Nature,

_, 578.

Giacconi, R., Gursky, H., Kellogg, E., Schreier, E., and Tananbaum,

H. 1971, Ap. J. Lett., 164_7, L67.

Li, F. 1975, private communication.

Rappaport, S., and McClintock, J. 1975, IAU Circ., No. 2794.

Schreier, E., Levinson, R., Gursky, H., Kellogg, E., Tananbaum, H., and

Giacconi, R. 1972, Ap. J. Lett., IJ_4, L143.

van Paradijs, J. A., Hammerschlag-Hensberge, G., van den Heuvel, E. P. J.,

Takens, R. J., and Zuiderwijk, E. J. 1976, this monograph.

van Paradijs, J. A., Hammerschlag-Hensberge, G., van den Heuvel, E. P. J.,
.... _o/.1

Zulderwljk, E. J., and Takens, R. J. Iv/_, iAU Circ., No. _u,_.

Wallerstein, G. 1974, A.______., 19_4, 451.

Zuiderwijk, E. J., van den Heuvel, E. P. J., and Hensberge, G. 1974,

Astron. and Ap., 3_5, 353.

663



TABLE I

BEST-FIT PARAMETER VALUES

OF THE 3U0900-40 BINARY SYSTEM*

= 282_8916 ± 0_0004

a sin i = 112 ± 3 light seconds
X

-I
K = 274 ± 9 km s

X

f(g) = 18.7 ± 1.6 M
®

e = 0.12 ± 0.04

= 146 ° ± 23 °

*Quoted errors are formal single-paramete_ 95% confidence limits.
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3U0900-40 (HD7758 I)

Discussion

A. Bunner:

I'd llke to urge everyone to refer to this X-ray source as

3U0900-40, or perhaps Vel XR-I, but no__tVela X-l, to avoid

confusion with the radio and X-ray supernova remnant Vela X,

which is totally unrelated.

P. C. Joss to P. A. Charles:

There is evidence in the data presented in this talk and in the Ariel 5

data presented earlier by Dr. Pounds that Vela X-I is brighter, on

average, before mld-phase than after mid-phase. The source variability

has been ascribed to attenuation of the X-rays as they pass through a bow

shock and an accretion wake. However, the X-ray star has an appreciably

eccentric orbit, with perlastron occurring before mid-phase. When the

X-ray star _ u=mE=_ "........ _^- _^ I_.1 _=_=4_y nf _h_ _tp]Izr wind

from the companion is higher and the mass accretion rate onto the X-ray

star may be enhanced. It is thus possible that some fraction of the source

variability is due to an intrinsic variation in source intensity, with

mexi-,,m intensity occurring near perisstron.

667



THE "OTHER" GALACTIC X-RAY SOURCES

by

Herbert Gursky
Center for Astrophysics

Harvard College Observatory/

Smithsonian Astrophysical Observatory
60 Garden Street

Cambridge, Massachusetts 02138

ABSTRACT

There is by now a "standard" mTdel for X-ray sources comprising a
_._........ +_._ _,_to_,_g _ ____p_ _t_r _nd _w_red bv mass accretion. It can

be argued that the majority and perhaps all the galactic X-ray sources are of this
kind. In this paper I discuss three kinds of source_ which may be qualitatively

different from these; namely, low luminosity sources such as 3U0352 + 30 ( = X
Perseus? )o the sources associated with the globular clusters, and the transient
X-ray sources.
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The outstanding result of the last several years in galactic X-ray astronomy

has been the discovery of the binary X-ray stars, and the realization that the X-ray
emitter is a neutron star or a black hole. These are strong X-ray sources with

identified optical companions in which either the X-ray source or the optical star
or both shows clear evidence of a binary system. There are nine such systems
and they are listed in Table 1, along with certain characteristics.

These objects have been subject to intense study throughout the electro-

magnetic spectrum and the revealed characteristics can be summarized as follows:

1. The 1-10 keV X-ray luminosity is in the range 1036 - 1038 erg/sec.

2. The binary periods extend from 0. 2 days to 10 days.
3. Three of the sources show regular pulsing of the X-ray emission

of 1. 2, 4.8 and 234 sec, respectively. These objects are likely

rotating, ma_etic neutron stars.

4. There is a variety of direct and indirect evidence for gas streaming
and mass transfer between the binary members.

Furthermore, this is clear evidence for a distinct class of binary systems
in which the optical member is an early type giant or supergiant star, including

Cyg X-l, 0900-40, 1700-37, Cen X-3 and SMC X-1. Because of the rarity of this

kind of star it is likely that there is a unique evolutionary sequence leading to its
existence of the kind described by Van den Heuvel and his colleagues (cf. Van den

Heuvel and Heise, 1972). The remaining X-ray sourqes have a companion of normal
mass; however, only for Cyg X-2 and for Her X-1 is the companion star "seen" in
any degree.

The standard model which has evolved for these X-ray stars is a binary

system in which one member is a compact star, either a neutron star or a black

hole (cf. Rees, 1974). The X-ray emission originates from heated matter falling

onto the compact star. It is also possible that white dwarfs may be the compact
star (Gursky, 1975).

The optical and X-ray characteristics of these X-ray sources have been

reviewed recently (cf. Gursky and Schreier, 1975; Giacconi, 1974; Bahcall and

Bahcall, 1974). The question I ask is simply, are all the galactic X-ray sources of
this kind or are there other, very different kinds of objects present? The question

is not so easy to answer because the X-ray sources do not offer an obvious

"signature" as do, for example, the radio pulsars. There are a few X-ray sources
which are clearly different; for example, the X-ray emission associated with the

nearby bright stars Sirius and Capella (Mewe et al, 1975), and the X-ray emission
from the supernova remnants (Gorenstein, 1974). Rather we are concerned with

the 100 or so sources which are obviously galactic because of their concentration
along the Milky Way, but which cannot be placed among the sources in Table 1.
These sources are plotted in Figure 1. It is likely that most of these sources are
similar to those in Table 1, however, there are indications that some are
"different". There are three kinds of sources I wish to discuss. One is the low

luminosity sources, the second is the globular cluster sources and the third is the
transient sources.

670



As I stated, the binary X-ray sources in Table 1 lie in the range 1036 -
1038 erg/sec and it can be argued that the majority of sources plotted in Figure 1

have luminosities in this range (Gursky, 1973; Margon and Ostriker, 1974). How-
ever, there is evidence for weaker sources. X - Perseus is coincident with the

X-ray source 3U0352 + 30 within less than 1'. If this is the source, then the X-ray

luminosity is about 3 x 1033 ergs/sec. The fact that the star is an early supergiant
would make one believe it belongs to the category Cyg X-l, 0900-40, etc. However,

the luminosity is three orders of magnitude below that of the others and there is no
evidence that it is a close binary. The only evidence for duplicity is a 584 day

periodicity found by Hutchings et 81 (1974). It is possible that this is simply a widely
separated example of the other binary X-ray stars; however, it may be useful to look
for other possibilities. The fact that the star itself emits ~ 1038 erg/sec in optical

and ultraviolet radiation and perhaps 1036 erg/sec in, a solar wind makes it possible

that some unlikely non-thermal process is operative which is giving rise to the
observed X-rays.

Other evidence for low luminosity sources is the appearance of a number of
X-ray sources in the back half of the galaxy (100 ° < I < 240 °) in the intensity range
5 - 10 Uhuru c/s shown separately in Figure 2. For these sources to have a
luminosity of 1036 erg/sec, their distance would need to be in the range 5 - 10 kpc;
thus, it is very possible that they are nearer and of much lower luminosity.

The giobuiar cluster sources were discovered m me unuru survey (_iacconl
et al, 1974), and the MIT-OSO-7 survey (Clark et al, 1975; Markert et al, 1975}.
The luminosity and variability of these sources is similar to that of other strong
galactic sources. Their significance as evidence that some of the X-ray sources such
as Sco X-1 and Cyg X-2 were of extreme Population II was discussed by Gursky and

Schreier (1975). Also, Clark (1975) has suggested that they are capture binaries.
However, a qualitatively different possibility has been discussed by Bahcall and
Ostriker (1975} and by Silk and Arons (1975}; namely, that they are massive black holes
formed at the centers of globular clusters during their early history. If this latter
possibility turns out to be correct, we will have a new category of black hole to investigate.

•l'he tinrd kind o/source - the transient sources - differs/rom the others

in that there is a well-defined signature present; namely, a sudden increase in
X-ray emission of at least 2 or 3 orders of magnitude and a gradual decline of
from weeks to months. Within the past year important new information has emerged
which may be the essential information in establishing their nature. Two transient
sources have been found which have periodic emission. One, in Centaurus, was
found to have a period of 6.75 minutes (Ives et al, 1975} and the other in Taurus with
a periodicity of 104 sec (Eyles et al, 1975}. Also, it is likely that one of the transient
sources has been optically identified. A source in Monocerous, A0621-00, first
reported by Elvis et al (1975) has apparently been identified optically by Boley and

Wolfson (1975} based on a position from the SAS-3 experiment (Matilsky, 1975).
Eachus (1975} has found from studying material in the Harvard plate stacks that the
optical object erupted once in the past and may be a recurring novae. Especially
because of this latter observation, there is a great temptation to fit the transient
X-ray sources in with the classical novae and describe them as the explosive phase
of a mass accreting white dwarf. However, there is no evidence for this, except
the obvious analogy. An example of an alternate hypothesis as discussed by Van Horn

and Hansen (1974} is that this is a classical novae in the sense that hydrogen rich
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materialaccretes onto a compact star and eventually burns explosively, however,
instead of the compact star being a white dwarf, it is a neutron star. The optical
emission would result from the explosively driven material and would closely
mimic what is seen from traditional novae. The X-ray emission could simply
result from the hot surface of the neutron star.

By now we have identified the following systems or conditions that lead to
observable cosmic X-radiation; blast waves from supernova renmants, ultra-
relativistic electrons in supernova remnants, radio pulsars, accretion onto neutron
stars and black holes, flare stars, cataclysmic variables, stellar coronae, and
hot white dwarfs. In addition there are literally dozens of other possibilities that

have been proposed but not yet observed. It is likely that we have only just begun to
unravel the diversity of physical conditions leading to X-ray emission from galactic
objects.
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OPTICAL OBSERVATIONS OF WRA 977

(3U 1223-62?)

D.J. Bord* and D.E. Mook*

Department of PhySics and Astronomy

Dartmouth College

Hanover, New Hampshire 03755

and

L. Petro* and W.A. Hiltner*

Department of Astronomy

University of Michigan

Ann Arbor, Michigan 48104

ABSTRACT

UBV photometry of WRA977 on 36 nights between January and

July of 1974 shows that this object is active on a time scale

of days at the 0.I mag level, but that _t rema_n_ q-lte con-

stant during monitoring intervals lasting up to 1 hour.

Periodogram analysis reveals no significant periodic variation

in the brightness of this object.

INTRODUCTION

Although x-ray observations of 3U 1223-62 do not indicate that this source is

part of a binary star system (Ricker et el. 1973 and McClintock et al. 1971),

Mauder (1974) has reported that his observations of WRA 977, the optical object

66 _ _v_ CLOOU_ULL W_L_I JU I_J--U_ i_ V _U_ 1_ / D _LtU JofLe_ e_ a *

1974), are consistent with a cos 28 variation of period 13d5. In an attempt to

confirm this result, we have observed WRA 977 photometrically during the period

L*

ness variability of this star. As suggested above, it is of interest to look

for periodic fluctuations in the light curve of this object since the majority

of the identified x-ray sources have been shown to be members of binary systems

whose brightness varies cyclically with time.

THE OBSERVATIONS

The data consist of 36 nights of differential photometry (see Hardle 1962) In

the V band using a regional standard star whose constancy has been checked.

Figure 1 shows a sample of monitoring of WRA 977 on 1974 April 19 UT. The mag-

nitude difference, AV, is taken in the sense AV = VWRA977 - VSTANDARD , and each

point is a 5 s integration. The standard deviation of the points about the

mean magnitude is 0.005 mag, and agrees with that expected for eachpoint from

a Poisson distribution, indicating that the scatter in the data is due primarily

to photon statistics. This type of monitoring was carried out on 6 nights for

intervals of up to 1 h, and all the observations confirm the results shown in

* Visiting Astronomers, Cerro Tololo Inter-American Observatory, which is

operated by the Association of Universities for Research in Astronomy, Inc.,

under contract with the National Science Foundation.
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Fig. I. Our conclusion is that WRA 977 shows little activity at the 0.01 mag

level on time scales of 1 h or less, in agreement with _uder's (1974)

findings.

LIGHT CURVE ANALYSIS

We have examined our data for evidence of a periodic component in the light

curve of WRA 977. Using the technique of Gray and Desikachary (1973), we

searched for periodicities in the nightly mean magnitudes in the range 0.05 to

0.25 cycles/day. Our analysis revealed a strong component in the periodogram

with a frequency of 0.113 cycles/day and a corresponding period of 8.85 days.

A least squares fit to the data using a sinusoid in this frequency gave an

amplitude of 0.022 mag; the r.m.s, scatter of the data about the sine curve

was 0.021 mag (see Fig. 2). Clearly, since the amplitude of the least squares

fit is comparable to one standard deviation, the disagreement between the ob-

servatlons and the computed light curve shown in Fig. 2 is not surprizing.

Although the results described above strongly suggest that there is no periodic

variation of significant amplitude in our data, we performed one final check

by folding the nightly means modulo 8485. Our findings are shown in Fig. 3

where zero phase is taken to coincide with our first observation on

JD 2442073.76. At any given phase, the scatter in the data is comparable to

the amplitude of any mean curve one might be tempted to draw through the points,

and argues against the existence of an 8_85 variation in the light curve of

WRA 977.

In order to determine whether WRA 977 exhibited any periodic fluctuations in

brightness prior to the start of our observations in 1974, we also performed a

periodogram analysis on van Genderen's (1973) data as read from a 2x enlarge-

ment of his graphical presentation. The results indicated the presence of a

periodic component with a period of 1145, but again, a comparison of the data

with the best least squares fit to a sinusold in the primary frequency revealed

large differences between the two, not unlike those found in Fig. 2.

CONCLUSIONS

It would appear that van Genderen's characterization of WRA 977 as an irregular

variable is correct in so far as neither the 13_5 cycle reported by Mauder or

any other significant periodic variation in either our data or that of van

Genderen has been found. At best, there is a suggestion that this object may

be varying in a quasi-periodic fashion such that low amplitude periodic fluc-

tuations of a given frequency persist for a few cycles and then disappear.

However, more observations will be needed before this behavior can be confirmed,

especially if the time scale of the cyclic variations is of the order of i0

days.

The authors wish to thank the Astrophysical Journal (Qby the American Astro-

nomical Society. All rights reserved.) and the University of Chicago Press for

granting permission to reproduce Figs. I and 2 from a paper by Bordet a]. (1976).
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THE INTERACTING BINARY SCO X-I

Anne P. Cowley and David Crampton

Dominion Astrophysical Observatory

R.R.#7, Victoria, B.C.

V8X 3X3.

ABSTRACT

New spectroscopic observations of Sco X-I show conclusively

that the emission lines vary in radial velocity with a

period of .787 d ± .006 and a full range of _ 120 km s-I. The

period is identical to that found by Gottleib et al (1975)

from photometric data; light minimum occurs when the emission

line region is at superior conjunction. The observations

indicate that the emission lines originate in an accretion

disk surrounding a neutron star which is orbiting about a

normal, although somewhat evolved companion. The light

variation is due to a heating effect on the non-degenerate

star, viewed at a small inclination angle. Various arguments

are used to show that the most probable masses for the

degenerate (neutron) star and the somewhat evolved companion

are _ i.4 M@ and _ i.0 M@ respectively.

INTRODUCTION

A brief discussion of the results from recent spectrocopic observations are given

in this paper; a more detailed account of this work is in press (Cowley and

Crampton 1975; Crampton, Cowley, Hutchings and Kaat 1976). Approximately 70

spectrograms (42 A/mm) were obtained at KPNO with the 2.1m telescope using the

image tube spectrograph on the nights of 1975 June 2, 3, 4 and 8. These have

been measured for radial velocity using the oscilloscope display machine at

the DAO and rectified intensity tracings have been made to study the line profile

and intensity variations.

SPECTRUM AND VELOCITIES

The spectrum consists of a blue continuum with strong emissions of He II (% 4686 _)

and N III (% 4640-50 blend) plus weaker emissions of H, He II, He I, C III, NV,

Si IV, and others. The H emission is noticeably variable in intensity, at times

being virtually absent. We find no evidence for any absorption features (other

than interstellar) between % 3800-5000 _.

Figure i shows the measured velocities of He II % 4686 _, the strongest and least

blended feature in the spectrum. Each point represents the velocity from one

spectrogram. A sine curve is superimposed with P = 0_787. A search was made

for other periods which might fit this data -- no others were found in the

range 0_i = 12_0. The observations are assembled in a velocity/phase diagram

in fig. 2.

The hydrogen lines are considerably weaker and suffer serious blending problems

with other features, but they do vary with the same period and phase and

approximately the same amplitude and systemic velocity as He II 4686 _. We

conclude these lines are formed around the same object as the He II.
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MODEL AND MASSES

In Table i, we present the formal orbital elements based on the He II emission

velocities. A small eccentricity (e = 0.12 ± 0.04) is derived when a solution

for all six elements is made. We have fixed e = 0 (circular orbit), and

suggest any formally derived eccentricity is probably spurious. We note that

the more precise period found by Gottleib et al (P = .787313 d) falls within

the error of our determination.

Because the light curve (Gottleib et al, 1975) _h_ws one minimum at the conjunction

when the emission object is behind, we infer the' the .2m modulation is primarily

due to a heating effect on the non-degenerate c_:Jpanion. Thus the emission

lines are formed either (I) around the X-ray source itself or (2) on the heated

face of its companion. However if (2) is correct, then the center of mass of

the system must lie within the companion to Sco X-I. This requires a large

mass ratio in turn implying either large values of i or very high masses, both

of which can be excluded considering the small light amplitude and the relatively

short period. We therefore conclude that the em_.sions are formed in a region

(the accretion disk) about the X-ray source itse] r and move with it.

In Table 2 we list possible masses of the components for assumed values of i.

We also compute the radius of the Roche lobe about the secondary star (R 2 Roche)_

for the given values of q and Land the radius of a main sequence star of mass

M 2 (RM2). We expect the secondary star fills its Roche lobe, and transfers

material to the neutron star through the inner Lagrangian point (Tannanbaum

and Hutchings 1974). The numbers in Table 2 indicate that no normal main

sequence star, which would be faint enough not to be spectroscopically visible,

comes close to filling its Roche lobe even for small inclinations. We therefore

suggest the secondary is a slightly evolved star, having reached the Roche

limiting surface only after leaving the main sequence. Mass transfer at

this stage would be very rapid, perhaps accounting for the scarcity of such

objects.

Limits to the value of i and the individual masses can be obtained in several

ways. A value of i < 65 ° is infered by the absence of eclipses, and even

smaller values are suggested by the absence of phase-dependent variations of

the weak emission spectrum and from the small amplitude of the light variations.

On the other hand, the masses become unacceptably high if i < 15 °. The X-ray

source itself is likely to be a neutron star, indicating a mass in the range

i - 2 M@. The mass of the secondary is probably less than 1.5 M@, since a more

massive star would be spectroscopically visible. Further, if one adopts a

distance (best estimates are i - 2 kpc), then the observed X-ray flux places

limits on the mass, assuming the accretion rate is at the Eddington limit.

Adopting a probable mass for the neutron star of 1.4 M@, we estimate the

secondary lies between 1.0 and 1.2 M@. We emphasize the secondary must be

evolved to fill its Roche lobe. Furthermore the small amplitude of the heating

effect suggests that there could be considerable attenuation of the X-rays in

the orbital plane, or that the accretion disk itself contributes a large

percentage of the total light.
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A HOT SPOT IN THE ACCRETION DISK

The He II 4686 line shows considerable structure at the peak. Crampton et al

tabulate He II velocities for both the emission line center and the peak, and

show that there is a systematic difference in these velocities. The velocity

behaviour suggest that the peak of the line is formed in a hot spot on the

following side of the accretion disk, where material streaming from the mass-

losing star hits the accretion disk. The AV (velocity peak-center) implies an

observed rotation of the disk at this height of _ 50 - 60 km s-l. The total

width of % 4686 _ implies a rotation of _ 700 km s-I closer to the neutron

star. If i _ 30 ° , the true rotational velocities will be twice these values.

At phase 0 (when the hot spot is viewed directly) the peak is central, and at

phase .5 there is a reversal in the peak, perhaps implying self absorption

when the hot spot is viewed on the far side of the accretion disk.

EMISSION LINE INTENSITIES

Equivalent widths and intensities have been measured for all of the lines.

These are discussed in detail by Crampton eta!. Because of the small amount
L, .....

V_L _L _ULl_of overlap in phase of this data, it is not possible to tell if L_= ....... J

in strength are periodic. Further observations are needed to test this. In

Fi_. 3 w= piuL W A v_ yLL=_= _uL _,_ _=_ ........ ,, ......... , ................

Because we do not have simultaneous photometry, these values have not been

corrected for a probable change in the continuum strength. We find that the

largest variations in strength occur when the emissions are strongest and that

the H lines vary over a greater range than the He II and other lines.

SUMMARY

Details of the above work can be found in Cowley and Crampton _975)and Crampton

et al (1976_ It is curious that the binary nature of this extremely bright

DI1D I IM[I_U V_JLU_.;JLf,.JL_
.... 2 ......................... *

Westphal et al (1968) and Crampton and Cowley _975) do not fit this period. We

suggest that there may be times when the star is more or less quiescent (not

flaring) when these velocity variations are more easily detected, and that we

were fortunate to observe the system at such a time.

We note that the systemic velocity is very high (-145 km s-I with respect to

the local standard of rest), so that Sco X-I may belong to the old disk

population, as do the spectroscopically similar old novae.

In summary this new data show that Sco X-I is a short period (P ffi.787 d)

spectroscopic binary consisting of a neutron star (assumed to be about 1.4 M 0)

with a dense accretion disk and a mass-loslng, slightly evolved star of about

l_.
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H1

TABLE 1

ORBITAL ELEMENTS FOR SCO X-1

P - 0.7874 ± .0058 d

K - 58.2 ± 3.0 km s-1

-1
V - -138.5 ± 3.0 km s

O

• - 0 (fixed)

T - JD 2442565.741 ± .013 d
o -1

standard deviation of fit = 15.9 km s

number of observations ffi 62

TABLE 2.

Possible Hnsoes and Rad:L1 of Sco X-1

tk

9. " H1/H2 HI H2 P'2 Roche R 2
(lO 5 kan) (10_ km)

1 .1 .1 5.4 .6

• _ _,R 1.3

3 1.2 .4 8.1 2.7

& 2.5 .6 9.4 4.1

1 .2 .2 6.7 1.3

2 .8 .4 8.3 2.7

3 2.2 .7 10.0 4.8

4 4.5 1.1 !!._ 7:7

.5 .1 .3 8.3 2.0

1 .5 .5 9.4 3.4

2 2.3 1.2 11.8 8.5

3 6.1 2.0 14.1 10.9

.1 .1 1.1 1.5.9 7.7

.3 .5 1.6 15.5 9.1

.5 1.1 2.1 16.1 11.2

.8 2.4 3._0 17.3 15.0

1 3.8 3.8 18.2 18.9

defined as the emission llne object
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SPECTROPHOTOMETRY OF THE UNUSUAL OPTICAL CANDIDATE

' FOR 3U 1728-24 (=GX 2+5 = GX 1+4):

A RECURRENT NOVA ?
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and
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ABSTRACT

We have investigated the spectrum of the object suggested

as a possible optical counterpart of GX 2+5 (Glass and Feast

1973), using the image tube scanner attached to the 3-m

telescope of Lick Observatory. An improved x-ray error

box obtained with Copernicus (Mason 1974) strongly supports

this proposed identification. We find that the candidate

displays all the characteristics of the symbiotic stars and

the related recurrent novae. The spectrum reveals the
...... ,.o ,._o. _ _÷_,, ta_th_ with a blue comoonent and

a large number of emission lines displaying a wide range oi

ionization. Among the emission lines identified or suspected

are: H I, He I, O I, [O I], [(9 II], [O III], Na I, Fe II, [Fe VIII,

[Fe X], [/% X], and [A XI]. There is evidence of variability

of both the continuum and the line intensities.

This ob_.et provides strong support for the often

proposed association of some x-ray sources with nova-like

systems. We suggest that in GX 2+5 accretion on a compact

companion of an M giant produces x-rays and ultraviolet

radiation which ionizes a circumstellar nebula, perhaps

ejected in a previous nova-like outburst.
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INTRODUCTION

A hard x-ray source designated GX 1+4 was discovered by Lewin

et al. (1971) and has subsequently been associated with the source

3U 1728-24 (Giacconi et al. 1974). This source has also been observed

with the Copernicus x-ray telescope by Hawkins, Mason, and Sanford

(1973), who derived an improved position and refer to it as GX 2+5.

A further improvement of the position by Mason (1974) yields a =

17 h 28 m 58.3 s, 5 = -24 ° 42' 50" (1950.0) with an error box smaller

than 0.5 square arc min. This error box is shown along with

several earlier ones in Figure 1, taken from Davidsen, Malina and

Bowyer (1976).

Although 1728-24 is listed as non-variable in the 3U catalog (Giacconi

et al. 1974), its flux in the 18-50 keV range is variable by factors

of 2-4 over time scales of order one minute (Lewin et al. 1971).

Lewin et al. suggest that the variation may be periodic with

P_ 2.3 minutes. The spectrum observed in 1970 could be fit by an

exponential model with kT = 28 ± 12 keV or by a power-law model

with energy index a= 1.4 ±0. 7 (Lewin et al. 1971, Ricker et al. 1973).

According to Ricker et al., the hard x-ray flux wither = i. 37 ±0.05

in the range 23-400 keV observed by Johnson et al. (1972) in awide-

field balloon observation of the galactic center region may be due

largely to GX 1+4. This object would then be the dominant hard

x-ray source in the galactic center. No low energy x-ray spectrum

has been reported for this source, but Hawkins et al. (1973) remark

that it displays attenuation with respect to Sco X-I.

A bright infrared object displaying strong H_ emission was discovered

within the Hawkins et al. error circle by Glass and Feast (1973), who

suggested it as a candidate for identification with the x-ray source on

the basis of its peculiarity. The improved Copernicus error box,

shown superposed on the red Palomar Sky Survey print in Figure 2,

contains this object as the brightest image, it is the only object

visible within the error box on the blue Sky Survey print of the field,

which is very heavily reddened. Here we present spectrophotometry of

this Ha object, whose position and unusual spectrum now suggest quite

strongly that it is the optical counterpart of 3U 1728-24.

OBSERVA TIONS

Observations of the candidate were made with the image tube scanner

(ITS) attached to the 3-m telescope of Lick Observatory on three nights

in 1974 and 1975. Some details of the observations are given in Table 1.

Although there is good evidence of variability, a weighted average of

the three spectra has been formed in order to improve the detectability

of weak features. The resulting spectrum is shown in Figure 3.
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The overwhelming dominance of the spectrum by Ha emission is the

most stri___ng featur_ of_he data. The weighted mean flux in Ha is
3.2 x 10--Verg cm -_ s None of the other emission lines present

has a flux which exceeds 0.03 F(H_). H 8 has a flux of _ 0. 010 F (He�.

After H_:, the strongest lines present are He I kk5876, 6678, and 7065,

and [Fe VII] X572! and >,6086. [O U[] Xk4959, 5007 are clearly

present and are weaker than H_. Numerous Fe II lines are also

evident. A search for [FelI] lines reveals no definite evidence of

their presence, although there are some weak broad blends to which

they might contribute. The He I lines increased in intensity by a

factor of 2. 6 between 1975 June and August while Ha increased by a
factor I. 6.

There is also evidence for lines of higher ionization states than [Fe VIII.

The strong feature at _ k6370 probably contains a contribution from

[Fe X] k6374 in addition to Fe[I k6369 and Si II X6371. These lines

are unresolved in these observationswhere the resolution is _10 ,_.

The pe____b!e _ ....... nf FAY'I k5535 and [A XI] X6919 supports the

suggested presence of the [Fe X] coronal line. The [Fe XIV] X5303

...... 1 I;_ ;o _,+ ,_,_n+ A1÷hnllgh _m,r_te radial velocities cannot

be obtained from these data, all of the suggested identifications are

consistent with the radial velocity of _ -150 km s -I derived from the

H and He lines. This is also in agreemc._nt with the Ha velocity

measured by Glass and Feast (1973).

In addition to emission lines displaying a wide range of ionization,

the spectrum also ...... '-..... _ ,_-,,_,_*....._s ¢ _'_ _ _+_,"rev_ctl_ ct u _ U.l.- [J t.JL'J Li _ ...... _ ....

Particularly evident is the strong blend of TiO and VO bands in

the 7700 - 8000 _ region. The TiO band at X7054 is also clearly

c_ J.LIIUU_II _..

The VO band at k7345 is also apparent. The presence of VO indicates

the spectral type is M6 or later (Albers 1974). Comparison of the

spectrum with those of RS Del (M6.5-7) and R Aql (MS. 5), also

obtained with the TTS, indicates a type _ M6, although precise

classification is hampered by the filling in due to emission lines and

an underlying blue continuum. Luminosity classification is

difficult based on these data, but an M dwarf can be ruled out. Our

adopted type M6 HI is consistent with the reddening and probable

distance of this object discussed below.

RFDDFNING AND DISTANCF

The optical candidate for 3U 1728-24 is very heavily reddened. If

we assume the intrinsic Balmer decrement is that appropriate to

radiative recombination in Case B (Brocklehurst 1971), the observed

ratio Ha/H_100 implies EB_V_3. _. This is almost certainly an
upper limit since the true Balmer decrement may well be affected by

collisional excitation and self-absorption.
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Anotherestimateof thereddeningcanbeobtainedfrom the infrared
colorsmeasuredby GlassandFeastandour result f_r the spectral
type. Themeasuredcolors are J-H = 1.54 4-0. 13 and H-K = 0.75 4-0.11.

Using the intrinsic colors of M giants and the reddening relationships

given by Lee (1970), we find FB_V = 1.7. This result is illustrated

in Figure 4. A value EB-V=3.3 would make the infrared colors

inconsistent with an M type spectrum. We adopt A v = 3. 6 EB_ V= 6. 1

(Lee 1970), which implies the intrinsic Balmer decrement is

H_ /H_ _17.

The continuum observed in the yellow region of the spectrum cannot

be provided by the M star, whose expected magnitude is V (M6 IID =20.7.
The observed values V = 18. 66 and V = 19.36 then indicate that a

variable blue component is responsible for most of the light observed

in the Vband. This component may be associated with the source of

ionization for the high excitation emission lines.

The distance t_ the system can be derived from the spectral type and

extinction found above. Assuming M v = -0. 5 for an M giant we find

d _10 kpc. Of course, this value is sensitive to A v, which is not well

determined. The corresponding x-ray luminosity_, including both

the Uhuru and 18-50 keV flux is Lx_4 x 1037 dl02 erg s -1, where

dl0 is the distance in units of 10 kpc. These results place the system

very close to the galactic center and indicate an x-ray luminosity

similar to that of other high luminosity x-ray sources (Margon and

Ostriker 1973). The expected interstellar absorption corresponding

to the observed reddening is N x_l x 1022 cm -2 (Ryter, Cesarky

and Adouze 1975).

SYMBIOTIC STARS, RFCURRING NOVAE, AND X-RAY SOURCES

The combination of high excitation emission features witt-, an M type

absorption spectrum is the defining characteristic of the symbiotic

stars (Merrill 1950). The members of this class are all variable and

include the recurring novae RS Oph and T CrB (cf. Swings 1970),

whose spectra are very similar to that of the object discussed here

(e.g. Joy and Swings 1945). T CrB has been established to be a

binary, in which the M3 [II component probably fills its Roche lobe

and transfers matter toward a blue subdwarf companion (Kraft 1958).

X-rays could be produced by such a system if the companion were a

compact object. Photoionization of gas surrounding the system might

then explain the occurrence of emission lines up to and including

[Fe X].

Another line of argument also supports the connection between

3U 1728-24 and the nova-like optical object discussed here. The

transient x-ray sources display a behavior quite similar to optical
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novae. Noneof thesesourceshasbeenoptically identifieduntil
recently, when A 0620-00, by far the brightest transient x-ray source

observed to date (Flvis et al. 1975, Matilsky 1975), was associated

with a nova-like optical outburst (Boley and Wolfson 1975). The

optical counterpart is apparently a recurrent nova which underwent a

previous outburst in 1917 (Fachus, Wright and Liller 1975). Although

its spectral characteristics at minimum light are as yet unknown, the

pre-nova was a faint red object (Ward et al. 1975), suggesting a

possible similarity to the 3U 1728-24 candidate discussed here.

That A 0620-00 might contain a red giant has been suggested at this

symposium by Cowley (1975), who noted the redness of the pre-nova.

Cowley suggested that the color indicates that most of the light from

the system at minimum may be due to the red giant. However, analogy

with the 3U 1728-24 candidate indicates the possibility that the very

red color on the Sky Survey plates is due to strong Ha emission. In

that case the visual continuum might still come largely from the

(presumably blue) compact component. We will have to wait until the

system returns to minimum light to test these alternatives.

Our suggestion that 3U 1728-24 may be related to transient x-ray

sources such as A 0620-00 implies that such sources are sometimes

relatively quiescent x-ray emitters. An example of such an object is

Aql X-1 (3U 1908+00), which underwent a large outburst in 1975 June

(Buff 1975) after a long period of low activity (Davidsen et al. 1975).
This source would have been classed as a transient if it had not

....._.__. _....h_.jh_,_,_............r_t_Ingued _Kaluzienski. et al. 1975).

CONCLUDING REMARKS

We have shown that the optical candidate for 3U 1728-24 is a composite

object consisting of a red giant and a variable blue component. In

addition, there are emission lines indicating a high degree of ionization

which might be produced by photoionization of a shell of :chatter

surrounding an embedded x-ray source. Such a shell could be the
remnant of an earlier nova-like outburst. In view of these facts and

the very small x-ray error box, the association of these two objects

becomes extremely plausible, it would, of course, be desirable to

observe correlated x-ray and optical variability in order to establish

the relation conclusively. It would be particularly interesting to

establish whether the optical object or the x-ray source have ever

experienced a nova-like outburst. Such an outburst would provide an

important link in the chain of arguments connecting "transient" x-ray

sources and novae.

We are greatly indebted to Hy Spinrad for donating some observing time

to this project and for his continuing interest and assistance.
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Table 1

Spec+.rophotnrnetry of the 3U 172 8-24 Opt:,¢al Candidate

Date Wavelength Range V scanner Ha flux
-2 -1

(10-13erg cm s )

1974 July 14 4400-6700 18.66 3.0

1975 June 13 4800-7300 19.36 2.5
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5U 1728-24

Figure 2 A finding chart for 3U 1728-24. The Copernicus error box
is superposed on the red Palomar Sky Survey print, with
north at the top and east to the left. The optical candidate is
marked.
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I
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I
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Figure 4 J-H vs. H-K for M giants and for the GX 1+4 optical candidate.

The infrared colors for MO III to M6 [II stars and the

reddening line are from Lee (1970). The colors of the
GX 1+4 candidate are from Glass and Feast (1973). For

spectral type M6 IIIa reddening EB_V = 1.7 is inferred.
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ABSTRACT

No modulation of the 3-6 keV x-ray Intermlty of Sco X-I

at alevel of excess of 1Z is observed at the optlcal perlod
of .787313d. Evidence Is found for shot-nolse character £n

a large fractlcn oz the x-ray emission. Almost all of the
Sco X-1 mission can be synthesized in terms of ,. 200 shots
per day, each with a duration of _ 1/3 day.

Sub tact headir_s: x-ray sources -- binaries

I. INTRODUCTXON

As Sco X-i Is, by far, the brightest x-ray source in the sky.

searches for regularity in its temporal behavior have been under-

taken for almost • decade. As yet, no reproducable resularlty

in x-rays has been observed on any tlmescale (c.f. Canlzares,

etal. 1975, Holt, et el. 1973, and included references).

More recently n convincing periodicity of 0.787313d has been

discovered by Gottlleb, Wright, and Liller (1975) at optXcaX wave-

lengths. The modulation amplitude of this effect in the optlcal 4=

.. 251. We report here an upper limit of IZ to any similar ver£et£on

in x-rays.

The Irregular variability of Sco X-I In x-rays ham long been

noted, but no quantitative estimate of the extent or tlmescale of

thls variability (in general) has been available. The lon$-duret£on

exposures to Sco X-I reported here enable us to estimate this

variability on timescales of hours or more, and allow for the
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modellng of the temporal intensity profile of Sco X-l. It Is

found that a large fraction of the emission from the source can

be sensibly associated with shot-llke pulses of duratlon,_ I/3d.

If. SEARCH FOR PERIODICITY
i

The present data are obtained with the Arlel-5 All-Sky Monitor,

a scanning pinhole camera with efflciency-corrected area of 0.6el u

in the _and 3-6 keV. The finest temporal resolutlon availsble is

I00 minutes, during which time the duty cycle for source observation

is _ IZ. Appcoxlmately 300 See X-I counts are accumulated in each

I00 minute orbit, In a background which is typlcally < I0 counts.

A mere extensive experiment description may be found in Holt (1975).

Figure 1 i8 a fold of one year of single orbit Sco X-I

data at the Gottlleb, Wright and L111er (1975) optlcal period of

0.787313d. No circle slnusold at any phase with amplltu_e as large

as IZ can be fit to the data° Any modulation of the x-ray intensity

at thls period must, therefore, be more than an order of megnltude

#

below the cor_espondin_ .optical modulation.

III. SHOT-NOISE ANALYSIS

The intensity measured each orbit from Sco X-1 is not

consistent with a constant average. Some indication of this

non-Poieson behavior is evident from Figure 2, where (b) contains

a particularly variable sample of single-orbit Sco X-1 data.

The intensity never drops substantially below 10 cu'Seec -_ (3-6 kaV)

or above _ 30 cm'Sse¢ -_ over the first year of Ariel-5 operatinn

(1974 October - 1975 _tober), although its average value over

3-month intervals decresses monotonically durln8 the year (see FLpre I).
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Of particular interest is the fact that intensity variations

generally extend over several orbits, indicating that the totality

of Sco X-1 variation cannot be ascribed to individual "flares" with

duration _ I hour.

Terrell (1972) first pointed out that the intensity

fluctuations in sources like Cyg X-I on tlmescales of < minutes

could be reconciled with the mathematical formalism of classical

shot-noise. This picture was pursued by Boldt, et al. (1975)

and Weisskopf, Kahn and Sutherland (1975)_ with the result that

the major fraction of the emission from Cyg X-1 can be represented

by shot-nolse with a shot duration of -- 1/2 sec. Presumably, this

timescale is characteristic of the x-rayemittln 8 volume of Cyg X-I,

and we attempt here to apply an analogous formalism to data obtained

with the Arlel-5 All-Sky Monitor from Sco X-1.

The basic test we apply to the data is the extent to which

the source variations, as a function of sampling time, are consistent

with the statistical errors. We construct a '_ariance ratio" V,

which is defined:

(Ik - g)_\/
V t (1)

"\t_i-_" / _

where _ is the mean of the intensity values I k (each obtained over

a sampling time t, and each with statistical error 8Ik), The

expectatlon-value-brackets indicate that V t represents the mean

of eachof the _values of the bracketed quantity in the total data

sample. Clearly, if the scatter of the Ik about _ is statistical

only, V t - i. Furthermore, if the errors 51 k have been underestimated,

V t • 1 but is independent of tlmescale t.
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If we assume Chat the emission from a source is composed entirely

of a constant baseline and a superposition of shots of several

durations (T i) it may be shown that

f_ (Ai)_ (2)
vt - _ [.I + _ _ _i

where _ is the number of counts detected in the smallest

sampling interval (t=l)p fl is the fraction of _ arising from the

i'Ch variety of shot noise, k i is the corresponding shot pulse

race (in units of (t=l) "I) of duration T i (in units of t-l), and

(Ai) t = 1 for t >> Ti,

=_t for t<<T i. (3)
Ti

iS a posslble correction factor if the statistical error has

been incorrectly estlmated _ = 1 if the error Is correct).

The method of investigation then Involves an interrogation

of three aspects of the V t distribution, If we assume a Sco X-I

intensity composed of a constant baseline and two shot-noise

components, one with TI<< (t-l) and one with 72 >> (t-l). we

obtain

V1-Ks [i +_ (_ + ____Z)]_ )

%-% . _,_ _.5
_T2

and V.=_'[l+_ _+_)). (4)

The simultaneous solution of the above yields an unambiguous

value of 72 (if the model is correct) since _ is prescribed by the date,

but the other parameters are not uniquely definable. In partleular,

fla/Ai is not separable, and cannot be determined independently of

_. We can, however, construct an additional '_aasurable" quantity
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similar to equation (1) from adtacent data elements onlyp i.e.

v" ..,/CIk - Ik+l) \
\ cszk__ + (6Ik+l) _/ • (5)

This expression reduces to V1 in the limit of either no shot noise

or T << (t = l) and has the advantage of being relatively insensi-

tive to variations on time scales much longer than (t - 1).

Figure 3 is the distribution of V t for N lO 3 orbits of data

obtained between 1974 December and 1975 February. It is clear that

no single shot-noise model can explain the V t distribution because

there is no apparent asymptote. Some insight into a possible

recovery from this disappointment can be gleaned from Figure 3b,

where the four quarters of the 10 s orbits have each been analyzed

separately. Only trial 3 is obviously inconsistent with the k - 10,

T 8 4 trace of Figure 3a, and the reason may be apparent from Table I.

A marked change in the average intensity_ occurred between trials

3 and 4 (actually during tbe duration of trial 3). As k cannot

be treated as a variable in the analysis as developed, any local

variation in k outside of Poisson statistics will invalidate the

form of equation (I).

In order to determine the possible contribution of an under-

est4mated error, two separate diagnostics were used. Crab Nebula data

were analyzed in precisely the same way, with the result that

V t was always < 2, with an average value of N 1.3. This is an

indication that some unrecoverable systematic errors are present

in the data (associated with pointing errors and incorrect

accululation times), but the same value of K (_-/1.3) may not

be appropriate to Sco X-I. A direct test is the value of V-*, which
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-6-

should be unity for both the limiting cases T << 1 and T _ 1. Its

value of N 4.4 indicates that in n__ocase can the estimated error

be incorrect by sore than a factor of two, and it is probably

such less than that. As ve can determine T2 independently of _,

hoverer, 4 < _2 ": $ (a shot duration ofN 1/3 d) Is apparently

a finn result of this analysls,

We can solve (non-unlquely) for the remalnder of the parameters,

because _ is estimable and consistency vith the data is achievable.

If we adopt I _ _ _ /2, we obtain .7 _ _ _ .9 for the situation

4 _ T2 • 5 from V ° alon_._.__e,vhlch is consistent vith the overall

picture of these long-duratlon shots domlnating the source variation

(in thls case, fl plays no significant role in the determination

of V °) • The pulse rate _z may vary considerably, ran$ing from

.8 (f_ - .7, _ = 1) to_, 27 (f_ - .9, IC =/2).

IV. SUMMARYAND DISCUSSION

No dimcernable x-ray modulation of the Sco X-1 intensity is

observed at the binary period of 0.787313d, with an upper limit

of 1Z. The only regularity in the x-ray emission for timescalee

in excess of a few hours appears to be the consistency of a large

fraction of the emission with shot noise. The most likely param-

eters (in units corresponding to 100 mino orbits) are T2 = &o5 +.Sp

= 15 +--5 and _ = o8 +olo Variations on smaller timescales

(or a constant baseline intensity) are not assignable from the

present data. It should be noted, however, that "flares" wlth
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duration _ 1 hour are explicitly required for complete consistency,

wlthan expected average frequency _ i0 day "_ contributing at

most a few percent of the total source emission. The average pulse

rate k2 can remain roughly constant for times Of the order of a

month (Joe. the actual number of shot pulses per orbit has a Polsson

distribution about this mean), but can change by_ 10% in a time

< 1 week. These changes ink, although relatively small, make

the V t distribution uninterpretable for total sample times > i monthi

The key features of this analysis with respect to a physical

interpretation of the parameters are a multiplicity of pulses

• I

(i,eo not a slngle pulse present at one time), and a characteristic

time of . I/3d (ioeo one-quarter to one-half of the binary period

of the system). With respect to the former feature, the large number

of shots present any time (N 70) imply an emission region which is

not well-locallzed, An accretion disk is the obvious candidate

region for sucha diffuse phenomenon, but wehave no satisfactory

_prlorl reason for expecting the deduced shot frequency° The

consistency of the characteristic shot duration with _ one-half

the binary period might conceivably be interpreted as a distribution

of hot spots which each have duration times longer than 1/3 day,

but which are intensity-modulated at the o787d period of the binary

system. This would suggest an expected o787 periodicity in the

Sco X-I intensity over a small number of cycles, but no such short-

term behavior is apparent in Figure2b. It would appear, Therefore,

that _ I/3d is the true duration of the x-ray emission pulses,
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The '_odel" we have presented here requires no detailed

physical assumptions about Sco X-l: instead, it is a simple

mathematical idealization (in terms of constant-amplltude,

constant-duration shots) which can synthesize the temporal behavior

of the source on timescales > 1 hour. Nevertheless, this

overall consistency with a multiplicity of long-duration shots

(rather than single flares superimposed on a baseline continuum)

may be generally characteristic of accretion sources. Lamb, Pines

and Shaham (1975) have suggested that the anomalous rotation

period variations in Her X-I dnd Cen X-3 maybe explainable in

terms of shot-like accretion variations In those sources, for

exampleo

"Measurable" Parameters in Shot-Nolse Analysis

-V 1 Asymptote* V _ i

1-4 10.7 4 •1 -- 17 •2

1 8.7 3.6 --24 4.4 17.6

2 10.1 4.6 ,-,23 5.5 17.9

3 9.8 5.1 -- 4.3 17.6

4 8.3 4.2 N27 3.5 15.7

• The best value of asymptote is obtained for t between_3 7 and. 1/5

of the total data record tma x
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Figure 1. Seo X-1 single-orbit data folded modulo .787313d. The trace labelled

'vcotal" contains one year (1974 October - 1975 October) of data, while the other

four are each approximately one-quarter of the data.
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EVIDENCE FOR A 13.6-DAY PERIOD IN CYGRUS X-2

FRO_I X-RAY ._ND OPTICAL OBSERVATIO,'_

CLAUDE cI_rAI,IER

Observatoire de _leudon

SERGIO A. ILOVAISKY

and Centre d'Etudes Nucl_aires de Sacla¥Observatoire de _4eUdOl]

f_.A?TELIA _R.,k.\_I-_RDIan_4 PFYER I_. SANFORD
P_nllard S_ace Sciences ' _ ...._a_oI aLOD', University College London

A_T_.A_

Analysis oC nhotoelectric _hotometry of the Cygnus X-2 ovtical candidate

obtained at the Haute Provence Obsem_atory and of X-ray observations of

this source made with OAO Cooernicus in 1974 and 1975 indicates the '_

awailable data are consistent with a _eriod of 13.6 days. The optical

lipht curve, which shows intrinsic scatter, exhibits two maxim and two

minima r_r rJer_od and has an armlitude of 0.4 magnitude in the B filter. _!

The 1974 X-ray light curve, whose amlitude is of a factor o£ two, sh_s !

a minimt_ which coincides in _hase with one of the outical minima. The

1975 X-ray cum'e, based on 12 days of observations in June, shows a smooth _

45_ flux modulation with an intensity maximam at mid-_hase (¢ = 0.5).

Su_ernosed on this are sharp. X-ray "di_s" during which the source drops

in intensity by as much as a £actor of tn.:o. The mean ovtical brightness

of Cyg X-2 in the B filter decreased from 1974 to 1975 by 0.3 magnitude

whereas the mean X-ray level increased by about 50%. Further correlated ,:

observations are olanned.

,
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SIMULTANEOUS X-RAY AND OPTICAL OBSERVATIONS

OF X PERSEI

Bruce Marson

Space Sciences Laboratory, University of California, Berkeley

ABSTRACT

Photoelectric photometry of X Persei was obtained on five ouC of seven

consecutive nights in J--uary 1975, from the Lick and Leuschner Observatories.

The observations yield B = 6.848_0.002, B-V = 0.139-+0.001, with no strong

evidencl for variability during the observing rm_. These are the faintest

end bluest photoelectric magnitudes and colors ever reported for X Per;

this change apparently occured relatively uniformly during 1973-74 and

is ro_inlecent of behavior last observed in _ 1900.

The suggested association of X Persel with the weak X-ray source

3U 0352+30 raises the possibility of detection of X-ray/optlcal covarlabillty.

We have successfully conducted a simultaneous optlcal/X-ray observation

utilizing grotmd-based photometry and a satelllte-borne proportional coun-

ter. On 1975 January 21, 7 hours of data were obtained from both observa-

tories simmultaneous with OAO Copernicus X-ray observations of 3U 0352+30.

The X-ray data varied during this period by a factor of two, but there

is no obviously correspondent optical activity, to a level of 0.02 mag.

The optical data are also used to limit to 0.01 mag variations coincident

with the X-ray periodicity reported by 1_htte et al.
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i. Introduction

Thepeculiar Be star X Pereei is of interest not only due to its un-

usual spectrum and variability, but also because of its possible association

with the weak X-ray source 3U 0352+30. This association has been noted

by many observers (e.g. Braes and Miley 1972; van den Bergh 1972; Brucato

and Krlstlan 1972), but is currently based only on a posltional coincidence

of order I arcmln (Hawklns, Mason, end Sanford 1975). Verification of the

identification is especially interesting because if it is valid, the X-ray

luminosity of X Per is only _ 4 x 1033 err s-1, several orders of magnitude

less than any other identified X-ray source (Margon and Ostriker 1973).

It has been pointed out by Moffat et al. (1973) and Haupt and Moffat

(1973) that another interesting candidate, ADS 28595, is only 22.5 arcsec

away from X Per. Because this spacing is beyond the spatial resolution

capabilities for the current 8eneration of X-ray astronomy experiments, it

would seem that the only prospects for a conclusive identification in the

£_edlate future lle in the detection of correlated X-ray and optical var-

labillty. Since the X-ray data of White et 81. (1976) show the source to

be variable by a factor of _ 2 on timeacales of hours, and also indicate an

ii or 22 hr periodicity, a search for such correlated optical activity seems

profitable. In particular, a small amplitude ll or 22-hr modulation could

easily have escaped detection thus far, as most existing photometry has eval-

uated fluctuations on tlmescales of minutes and shorter, or weeks and longer

(e.g. Richer et al. 1972; Mook et el. 1974; Frohlich and Nevo 1974), and the

close coincidence of these timescales to the sidereal period makes it diffi-

cult to obtain uniform phase coverage.

2. Observations

Photoelectric photometry of X Per was obtained on 5 out of 7 conse-

cutive nights in January 1975, utilizing the 76-cm Ritchey-Chretien reflec-

tor of the Leuechner Observatory, and the 61-cm Cassegraln reflector of the

Lick Observatory. In both cases a lP21 photomultlplier was employed. In-

tegration times varied from 10-sac to several minutes; several adjacent

points were typlcally averaged prior to data reduction. Filters which mimic

the Johnson g and V bands were used alternately, resulting in a total of

320 magnitudes during the week of observing.

The data were reduced to standard Johnson B and V magnitudes through

the observation of at least 3 different standard stars each night. To

provide maximum discrimination against systematic effects, different stan-

dard stars and a different reduction programme were used at the two obser-

vatories. The resulting standardized magnitudes and colors are shown in

Figure I. The data show no strong evidence for variability within a night,

with a standard error for each point (derived from the scatter in the data

itself) of approximately 0.02 mar in B. The magnitudes and colors have

therefore been averaged separately for each site for each night, and these

data appear in Table 1. The uncertainties quoted in this table are the

standard deviation of the mean of the data sample for each night.

Inspection of the table reveals that all of the B magnitudes are in

agreement to within better than 3standard deviations; We thus have no

evidence for night-to-night variability. There is slightly more scatter
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in the measured values of B-V, with two of the differences barely signifi-

cant at the 30 level. Although color changes in X Per have been suggested

by several observers (e.g. Frohlich and Nero 1974),we do not consider the

small color differences in our data notable in view of the sky brightness

at our two observing sites. We have therefore also provided in Table i the

mean and standard deviation of the entire data set.

On January 21, 1975 from 0230 to I000 UT, our photometry was simultan-

eous with 2,5 - 7.5 keV X-ray observations of 3U 0352+30 by the UCL co111mated

proportional counter aboard OAO Copernicus, The instrumentation and observ-

ing technique of this experiment have been described in detail elsewhere

(Sanford 1974; Bowles et el. 197g). Facilities at both Lick and Leuschner

Observatories were employed on this nlght, and the observing program was

planned using a detailed OAO orbital ephemeris. This permitted us to maxi-

mize simultaneous coverage by obtaining observations of standard stars only

while X Per was Earth-occulted for OAO, or while the X-ray experiment was

off during passage through the South Atlantic Anomaly. This modified obser-

ving procedure accounts for the greatly increased density of data points

near 55 hours elapsed time in Figure 1.

In Figure 2 we present on an expanded scale the individual magnitudes

and colors obtained during this period of simultaneity with OAO. Through

the kindness of P. Sanford and his colleagues, the figure also contains

the background-corrected X-ray count rate on the source 3U 0352+30. The

only gaps in the data are caused by OAO experiment shutdowns for the rea-

sons discussed above. Each point of X-ray data is the sum of a 63-s inte-

gration period.

3. Discussion

The most obviously interesting feature of the photometry presented

in Figure 1 end 2 is that the B magnitudes are substantially fainter, end

the B-V colors substantially bluer, than any photoelectric measurements

previously reported for X Per. The historical tabulation of Hook et el.

(1974) indicates that no photoelectric magnitudes fainter than B - 6.6

have ever been recorded, nor colors bluer than B-V - 0.24. There are only

scattered instances of X Per becoming as faint as the V - 6.7 we observe

now_ with no such occasions for the past 25 years.

Because Mook et el. obtained B ffi6.52-+0.01, B-V - 0_28-+0.01 in January

1973, this latest decline must have occured during the two year interval

between our observations. The records of the American Association of Var-

iable Star Observers (Mattei 1975) are consistent with a gradual decline

in brightness of X Per during this time period, as is the preliminary re-

port of Gottlieb and Liller (1975), based on photographic magnitudes from

patrol plates. Two quite comparable steady decreases in the brightness of

X Per occured in 1895 and 1903 (cf. Mook et al. 1974), but certainly none

since that time. Further photoelectric observations will be interesting izL

this regard. ,

We now examine "the question of correlated X-ray and optical fluctuations.

It is clear from Figure 2 that our data show no compelling evidence for

such correlations. For example, the distinct peaks in the X-ray flux at UT

0319, 0455, and 0743 are not accompanied by analagous optical events. This

statement can be made to an accuracy of the individual photometric bright-

ness determinations, which is of order 0.02 meg.
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It is interesting to predict the expected level of such correlated

fluctuatlons, under the assumption that the identification of X Per with

3U 0352+30 is correct. The dominant cause of simultaneous variability

on the tlmescales relevant to our data (i.e., minutes to hours) will be

reprocessing into visible llght of X-rays incident on the atmosphere of

X Per. This same process is responslble for both the 1.7-day and 1.24-s

optlcal varlabillty of HZ Herculls (Davldsen et al. 1972 ; Davldsen, /4argon,

and Middledltch 1975). There are four factors which will affect the amp-

litude of the resulting optical modulation: the ratio of intrinsic X-ray

to optical flux in the system, the physical reprocesslng efficiency, the

solid angle subtended by X Per at the X-ray source, and the extent to which

fluctuatlons are smoothed by characteristic light travel times in the system.

The first quantity is directly computable from our data, and is a part-

Icularly useful ratio because it is distance independent. The visible flux

we observe in the B-band (AA 3800 - 5400 _) corresponds to 2.5 x 10 -8 ere cm -2

s -I incident at the top of the Earth's atmosphere. The observed X-ray flux in

the 2.5 - 7.5 keY band, e_tLiv_lent to 10 OAO counts per 63-s integration per-
iod, is 2 x i0 -I0 erg cm -_ s-'. Thus the X-ray to optical flux ratio is of

order 10-2. For the second quantity, the efficiency of the physical process

responsible for X-ray to optical reprocessing, we note that the inferred en-

ergy input needed to cause the 1.7-d variability of HZ Hercul£s is very close

to the observed X-ray luminosity of Hercules X-I (Milgrom and Salpeter 1975).

Thus at least for some systems this efficiency is of order unity.

The remalnln E two parameters are dependent upon the geometry adopted

for the system. If we consider the X-ray source to be in orbit about X Per

with a 584 day _erlod, as has been suggested by Hutchings e__tta l. (1974),

then only _ I0 -_ of the X-ray flux is incident on the vlslble star. In

addition, the light travel time from secondary to primary is of order of or

greater than the tlmescale of the X-ray fluctuations in Figure 2. Thus un-

der these assumptions we do not expect detectable covarlabillty through this

process.

If, however, we associate the ll/22-hr X-ray variability reported by

White et al. (1976) with orbital motion of the X-ray source, the situation

is quite different. In the case of this very close orbit, _ 0.5 of the X-ray

flux is incident on X Per, and the light travel times are negllglble compared

to the X-ray fluctuation times in Figure 2. Therefore we expect the the

X-ray varla_ions should appear in the optical data at a level diluted by the

product of the inverse solid angle and the X-ray to optical intensity ratio,

i.e., 5 x 10-3. The variations of factor two on timescales of minutes indi-

cated in Figure 2 should thus give rise to optical fluctuations of order

0.005 mag, slightly below the sensitivity threshold of the current work, but

still easily attainable with existing instrumentation. Thus if continued

simultaneous observations of improved sensitivity fall to reveal such covar-

labillty, the association of X Per with the X-ray source, or the X-ray modula-

tion with an orbital period, may well be in doubt.

Finally, we consider constraints provided by our data on any 11/22-hr

optlcal/X-ray covarlablllty. It is clear from Table 1 that on individual

nights our B magnitudes are in agreement to a level of _ 0.003 mag. In

our 150-hour observing period, we have sampled almost 7 22-hr periods, but

only 60% of an entire 22-hr phase. A reasonably slnusoidal llght curve, of

the type caused by tldal distortion of the primary, would certainly not have

escaped our attention if it had amplitude of 0.01 mag or greater. For the
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purposes of comparlson, the amplitude of the light curve of HDE 226868,

the companion of Cygnus X-l, is 0.05 _g (e.g. Walker 1972), and that of

Centaurus X-3, which has a similar mass function to that derived by

Hutchlngs et al. for X Per, has amplitude 0.12 mag (Krzemlnskl 1974).

I am indebted to Messrs. R. Stone and G. Penegor for their competent
assistance in obtaining some of the photometry, thank Ms. J. Mattel for

providing AAVSO records, and am grateful to Messrs. P. Sanford and K. Mason
for helping to arrange the simultaneous OAO observations and providing their

data prior to publication. This work has been supported by NASA Grants
NSG 5057 and NSG 7139.

Table i. Photometry of X Persel

Day of Jan 1975 Telescope B B-V n
(trr) cm

19 76 6.850+0.002 0.143_+0.002 28
20 76 6.851+0. 002 0.143+0.001 39

21 76 6.845_+0.003 0.139-+0.001 72

21 61 6.844+0.009 O. 115-+0.008 6
23 61 6.850_+0.005 0.131_+0.003 7

25 61 6.857_+0.003 0.137_+0.002 8

All data -- 6.848±0.002 0.139±0.001 160
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OTHER POSSIBLE X-RAY BINARIES

Discussion

N. V. Vidal to D. Bord:

i. I collected some 27 image tube spectroscopic plates of WRA 977 in the

blue and in the red regions at 50 and i00 _/mm dispersion° Line profiles

change frequently and absorption lines sometimes are completely filled in

emission (Hel 4922). Any radial velocities measurements will be unreliable.

The P Cygni profile at H8 and H_ keeps changing. The separation between

the absorption and the emission components is _400 km/sec in both H_ and

2. On inspection of the photoelectric data by Van Genderen we found that

period of 13.5 days (Mauder, Ho 1974, IAUC 2673) may be fitted but the

scatter is high. The best defined minimum is on July i0, 1973.

W. Baity:

I wish to draw attention to the source Circinus X-Io Good evidence for a

12.3 d period has been presented by Jones, Forman and Tananbaum (Ap. J.,

1975), but this was not found by the MIT and UCSD instruments on board

OS0-7, nor does there appear to be a periodicity at small multiples of

12.3do However, the source does flare up for periods of i or more days,

with at least three of these flares separated by _ 200 days.
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X-RAY ASTRONOMY PROGRAM AT C1T

G. P. Garmire

Department of Physics

California Institute of Technology

Pasadena, CA 91125

ABSTRACT

The X-ray Astronomy program at CIT includes a rocket borne Wolter

type I telescope with associated position sensitive detectors,

ground based observations in the optical and infrared spectral

bands, an experiment on the HEAO-A spacecraft, and a rocket borne

test flight of the HEAO-A concept jointly with the GSFC group

using a modified detector flown on their rocket to study Cyg X-I

millisecond pulse structure and spectra.

The Caltech program is currently expending most of its time on the develop-

ment of a focusing Wolter type I telescope (Wolter, 1952) to be carried by

an Astrobee F early next year} the modification of the Goddard rocket pay-

load to include a low energy detector to study Cygnus X-I with a launch in

mld-April of 1976) the calibratlon, testing and development of data handling

programs for the low energy portion of the HEAO A-2 experiment} the develop-

ment of high resolution position and energy sensing scintillation detectors)

and the development of a mass production technique for fabricating Wolter

type I telescopes with angular resolution better than one arc minute.

Finally, a ground based observing progrmn is being initiated by Bill

Prledhorsky, a graduate student, to study the spatlal distribution and

intensity of corona lines in supernova remnants, photometry and time

variability of binary X-ray sources and high resolution spectrophotometry

of binary sources to study gas motion and excitation. There is continuing

interest in the infrared emission from compact X-ray sources, particularly

Cyg X-3.

The scientific objectives of the rocket program are summarized below:

l) Positioning, identification and mapplng of clusters of galaxies.

2) The mapping and spectral study of supernova remnants.

3) The photometry of potentlal EUV stars in several bands.

4) Positioning and identification of high latitude X-ray sources.

5) Scattering by interstellar dust.

The program consists of about three or four flights of a nested pair of

Wolter type I telescopes on an Astrobee F vehicle to he followed by a

similar number of flights of a much larger telescope of the Wolter type I

design for an Aries vehicle. The latter program is a joint effort with the

Columbia Astrophysics Laboratory, while the Astrobee program has been in
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collaborationwith Dr. Guenter Riegler formerly at the Bendix Aerospace

Corporation and now with JPL. The Aries progr,,- is envisioned as'a

preparation for Space Shuttle Missions. The physical parameters of

the two systems are listed below.

Astrobee F Aries

2
Geometrical area 200 cm 1450 cm2(2 mirrors)

Focal length 50 inches 85 inches

Angular resolution 20 arcseconds 30 arcseconds

Sensitivity

0.5 - 1.5 keY

0.15 - 0.28 keY

0.060 - 0.075 keV

Field Of View

3.x lO'3ph/cm2sec _E

1.4 x lO'3ph/cm 2 _E

8 x lO'3ph/cm 2

2 °

5 x 10-4ph/cm2secAE

2 x 10"4ph/cm2secAE

1 x 10"3ph/cm2secAE

3°

The high energy cut-off of the Aries telescope can be increased by

including a third set of mirrors with smaller angles of incidence

withi_ the currently planned nested pair. This would increase the

_eometrical area by about 500 cm2and the weight by another 300 lbs.

The choice of focal length is determined by what will fit into a Space

Shuttle pallet rather than the Aries capability. This length may change

depending on a better understanding of limitations' imposed by the Space

Shuttle.

Thls work'is supported by NASA grants: NAS 5-23315, NGR 5-002-284

and NGL 05-002-207.

Reference

WoEter/ H. 1952, Ann. Physik, I0, 94.
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OSO-8 OBSERVING SCHEDULE FOR X-RAY BINARIES

Roger J. Thomas

Laboratory for Solar Physics
and Astrophysics

Goddard Space Flight Center
Greenbelt, Maryland 20771

ABSTRACT

Six different instruments on 0SO-8 have observed

several blnary x-ray sources between energies
of 0.13 keV and 1 MeV at various times since

21 June 1975. The schedule for these observatioms

is given, as well as the present plan for such
future observations through July 1976. Included
is the 0S0-8 observing schedule for the transient

x-ray source A0620-00.

Although the eighth Orbiting Solar Observatory (OSO-8) launched on
21 June 1975 was not primarily designed for cosmic investigatioms,

it does include six instruments in the rotating wheel section of
the spacecraft that are capable of studying binary x-ray sources.

Instrumental parameters of these experiments are listed in
Table 1. Together, they cover the entire energy range from
0.13 keV to over 1 MeV with good resolution and sensitivity.

Due to operational constraints, the observing schedules of the
cosmic x-ray experiments on 0SO-8 must be planned long in adv_oe

A baseline plan has already been generated with a lead-t_aeof
more than twelve months, presently running through July 1976.
In addition detailed schedules for every satellite orbit (each
90 minutes of time) are negotiated from one to four months hef¢_o

the actual observations.

From these two types of schedules, I have extracted the tines
during which binary x-ray sources were (or are planned to he) in
the nominal field of view of each 0S0-8 instrument. These tigem
are listed in Table 2, which gives the month and day (U.T.) for
the start and end of each observing interval included in the
detailed schedules to date; they should be accurate to a tenth
of a day. Dates after 4 December 1975 (shown in parentheses in
Table 2) are from the general baseline plan, and are only aecurato

to within a few days even in the absence of major schedule
revisions. Also listed in Table 2 is the angular separation
between the source and the sun (_5 °) for each observation. The
OSO-8 observing schedule for the strong, transient source A0620-00
is included as well, due to the considerable interest in this
remarkable object.
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THE OBSERVATION PROGRAM FOR THE GSFC

COSMIC X-RAY SPECTROSCOPY EXPERIMENT

R. H. Becker, E. A. Boldt, S. S. Holt, S° H. Pravdo,

R. E. Rothschild, P. J. Serlemitsos, J. Swank

NASA/Goddard Space Flight Center

Greenbelt, Maryland 20771

ABSTRACT

The GSFC cosmic x-ray spectroscopy experiment on 0SO-8 will

observe seven x-ray binary sources in its first six months of

operation. If possible, each of these sources will be observed

for one or more binary orbits so that we can observe the x-ray

spectrum of each object through all phases of its orbit. For

the two pulsing binaries, Her X-I and Cen X-3, we will study

spectral variations over the pulse period. We have arranged for

simultaneous radio observations of Cyg X-I and Cyg X-3 to search

for any correlation between radio and x-ray emission. During

the first year of operation, the GSFC detectors will observe

over 50% of the known x-ray sources. The large number of x-ray

sources included in this program could result in the discovery

of new x-ray binary sources.

The OSO-8 satellite has been operational since June 21, 1975. Since then,

extensive observations have been made of the binary sources Her X-l, Cen X-3,

3U1700-37, and most recently SMC X-I. The GSFC x-ray detectors have pro-

duced detailed spectra for these objects in the energy range 2-60 keV. In

the next two months the OSO-8 observational program will include three addi-

tional binary x-ray sources, Cyg X-l, Cyg X-3, and 3U0900-40. Our primary

objective with regard to the binary x-ray sources is to search for spectra

variability over a wide range of temporal regimes. Each x-ray binary will

be studied for one or more binary periods, allowing observations of each binary

in every phase of its orbital motion.

Our analysis of quick look data from Cen X-3 and Her X-I (the only type of data

available thus far) confirms that the spectra of these sources change on time

scales of both the pulse and orbital period. With the availability of all the

data, we anticipate studying the spectral differences between pulsed and non-

pulsed emission, the effects of varying amounts of absorption on the x-ray

spectrum as a compact x-ray source approaches and exits eclipse by its primary,

and the spectra of low intensity periods such as during eclipse and intensity

dips.

When possible, we want to add an extra dimension to our study of binary sources

by arranging simultaneous observations in other bandwidths. This is achieved

automatically in some instances in so far as OSO-8 carries a NASA-GSFC hard

X-ray telescope and a soft X-ray experiment from the University of Wisconsin.

In addition, for some sources it is important to obtain simultaneous radio and

infrared observations. As an example of the type of cooperation possible,

last summer Cen A, an extragalactic x-ray emitter, was observed by our x-ray

experiment, the NASA-GSFC hard x-ray telescope, three southern hemisphere
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infrared observatories, and the millimeter wavelength radio telescope at

the University of Texas. Our plans for the future include stmulr_aneous

observations of Cyg X-1 and Cyg X-3 in November, 1975, with the NRAO

4-element inter£erometer at centimeter wavelengths.

A final aspect of the 0SO-8 observational program is a search for previously

undetected binary sources. Our sensitivity end time resolution allows us

to examine very weak sources for evidence of periodicity. In the first year

of operation, the GSFC detectors aboard OS0-8 will view over 50_ of the known

x-ray sources in the sky. However, since 0SO-8 occasionally spends as few as

three hours on some sources, we are not always assured of detecting a binary
source. None t_e less, looking forward to possibly 2 years of successful

operation and the large number of x-ray sources that will be included In the

observations, this program could result in the discovery of new binary x-ray
sources.
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A STUDY OF THE COSMIC SOUI_CES OF HARD X-RAYS

B. R. Dennis, J. Beall +, C. J. Crannell,

K. J. Frost and L. E. Orwlg

Laboratory for Solar Physics and Astrophysics

NASA-Goddard SpaceFligh t Center

Greenbelt, Maryland 20771

ABSTRACT

An actively-shielded, high-energy _-ray telescope was launched on-

board OSO-8 on 21 Ju_e 1975. The primary objectives of this ex-

perlment are the measurements of the energy spectrum of discrete

cosmic x-ray sources in the range 20 keV to 3 MeV and of the tem-

poral variations in the intensity of each source detected with a

time resolution of 0.3 msec. This detector provides the highest

duty factor and the finest time resolution of any of its kind for

observations over a period of up to I0 days. The background

spectrum of this detector in orbit has been monitored continuously

since shortly after launch. The minimum detectable source

strength is estimated to be between 10 -4 and 10 -5 photons/cm2-sec

keV, limited primarily by the effects of induced radioactivity.

From 16 July through 18 July 1975 the x-ray binary, Cen X-3, was

observed with the hard x-ray telescope. For this source, complete

data coverage is needed before statistically significant results

can be reported on the high-energy x-ray spectrum and the energy

dependence of the pulsed fraction. With the partial data coverage

presently available, statistically significant results have been

obtained from observations of Cen A (27 July through 4 August 1975)

and Sco X-I (6 through 9 September 1975). Some of the hard x-ray

sources which will be the observational objectives of this experi-

ment during the period from October 1975 through June 1976 are

Cyg X-I, Cyg X-2, Per X-I, Tau X-l, Vel X-l, Com X-I, Vir X-I, and

3C273.

The primary objectives of the High-Energy Celestial X-Ray Experiment on

OS0-8 are:

To measure the spectrum of cosmic x-ray sources in the energy range

from 20 keV to 3 MeV, and

To search for both periodic and aperiodic time variations in the In-

tensity of the sources detected.

In order to achieve these objectives we have built a detector designed to

minimize and to monitor continuously the detector background spectrum. _e

detector covers a broad energy range and has continuous in-fllght calibra-

tion. The relatively narrow field of view of (5 ° FWHM) enables closely

Department of Physics, University of Maryland, College Park, Maryland
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spaced sources to be resolved. Very precise timing capability (312.5_s for

each photon) has been incorporated in the design of the experiment so that

periodic sources can be detected and the details of their time history

studied.

The high-energy x-ray detector is an actively shielded scintillation tele-

scope of the type originally designed by Frost et al (1966). The center of

the detector consists of two optically isolated Csl(Na) crystals each 1.27 cm

thick. These crystals are shielded by a large active collimator made up of

5 Csl(Na) crystals. (See Figure I.) Seventeen parallel holes 1.435 cm in

diameter and 13.34 cm long drilled through the top shield crystal to one of

the'two central crystals allows the unimpeded passage of a fraction of X-rays

from the forward direction while x-rays from all other directions are atten-

uated by a shield thickness of at least 5 cm. This configuration provides

a total sensitive area of 26.2 cm 2 and an aperture with a FWHM of 5 ° . The

second completely shielded central crystal serves to monitor the internal

background of the instrument. Two 2.5 cm photomultipliers (RCA C31016F)

view each central crystal from the side and a total of 13 photomultipliers

(RCA C31016F and C70132B) view the shield crystals. A 0.635 cm thick plastic

scintillator positioned over the 17 holes serves to reject low-energy charged

particles incident on the open central crystal. Two charged particle monitors

are used to turn off the high voltage to the other photomultipliers during

passages through the South Atlantic Anomaly.

X-ray events are recorded when a signal is detected from either one of the

two central crystals in anticoincidence with any signals from the shield

crystals and from the plastic scintillator over the collimation holes. Each

acceptable x-ray pulse from either central crystal is pulse-height-analyzed

into 256 linear channels which can, by command from the ground, cover one of

16 energy ranges extending from 0-200 keV to 0-3 MeV. The central crystal

and shield discriminator threshold levels can also be adjusted independently

by command to achieve the optimum levels consistent with minimum dead time

and efficient x-ray selection. Currently, the central crystal energy range

is _ 20-275 keV and the shield threshold levels are set at _ I00 keV. The

para-meters which determine the energy ranges are continuousTy monitored in

orbit using in-flight calibration systems. The central crystals are cali-

brated with the 59.6 keV x-rays from Am 241 tagged by the 5 MeV coincident

_-particles detected by two solid-state detectors. The shield crystals are

calibrated with the light from Am 241 _-particles produced in NaI(T%) pellets.

The detector efficiency as a function of photon energy is shown in Figure 2.

The decrease at low energies is caused by the material in front of the

central crystal including an approximately 70 micron non-scintillating

layer on the Csl(Na) crystal itself resulting from the action of water vapor

before launch (Goodman, 1975). The time of arrival of each accepted x-ray

event is also recorded to a resolution of 312.5_s. The spacecraft clock is

very stable - < I part in 109 per 24 hours - and it is time tagged with

respect to Universal Time once per day to an accuracy of < 100_s. Thus,

data for periodic x-ray sources can be phase folded for l_ng periods _ i0

days and compared in phase with other observations.
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The pulse amplitude and time of arrival of an acceptable x-ray event are

read out in the telemetry once every 20 msec. Thus, this information on a

maximum of 50 events/second can be read out. The overall instrument live

time is read out once every 160 msec allowing a constant determination of

the "Zrue" rate of events.

The x-ray detector is mounted in the wheel section of OS0-8 with its field-

of-view pointed in the aft direction, i.e. away from the sail section of the

spacecraft. The detector axis is offset from the wheel spin axis by 5 ° so

that as the wheel rotates at _ 6 rpm the detector axis sweeps out a small

circle on the celestial sphere. Any celestial x-ray source close to the

circumference of this circle will pass into and out of the detector field of

view every ten seconds. In this way regular measurements are made of the

detector counting rate both with and without the source in the field of view.

This source modulation is very important since it provides a continual

monitor of the detector background rate in addition to the monitor provided

by the second central crystal. The spin axis of the spacecraft is opportun-

istically re-oriented to bring different x-ray sources into the 5 ° circle

swept out by the detector axis. Since launch the following sources with

significant fluxes above 20 keV have been observed: Cen X-3, Cen A, Sco X-I

and sources near the galactic center. A complete analysis of the data has

not yet been made but preliminary analysis of the 2-4 orbits/day of quick-

look data has shown that we have clearly detected Cen A at about the same

intensity as that observed by Hall et al. (1975) at energies up to 150 keV.

We have also detected Sco X-I up to 50 keV and possibly Cen X-3. A sample

of the data on Sco X-I is shown in Figure 3, in which the counting rate of

20-30 keV x-ray events from the open central crystal is plotted as a function

of the wheel azimuth angle. The triangular response of the detector which

in this representation is about I00 ° wide at the base is clearly seen in the

data. The source intensity obtained from these data is in agreement with

values obtained previously.

The limit in source detectability of this instrument is set by the detector

background rate which is dominated by the _nduced radioactivity produced

during passage through the high proton fluxes in the South Atlantic Anomaly.

This detector background spectrum is shown in Figure 4 in which the various

peaks resulting from the decay of various isotopes originating in the de-

tector material can be clearly seen. 0nly those sources with fluxes which

will contribute significantly above this background spectrum can be detected

by this instrument. With the constant monitoring of this background spectrum,

both by the second completely shielded central crystal and by the source

modulation, we expect to be able to detect sources which contribute anything

more than a few percent to the total spectrum. From Figure 4 this would mean

that a source with a flux above 20 keV of 10 -4 - 10 -5 photon/cm2-sec keV

should be detectable by this instrument, provided the wheel spin axis is

held 5° away from it for a period of I0 days or more.

In the coming months the spin axis will be moved to bring the following

sources of interest into our field of view for some period of time generally

less than I0 days: Cyg X-I, Cyg X-3, Per X-I, Tau X-l, Vela, Vir X-I and

3C273. Each of these sources will be observed by the GSFC/Serlemitsos and

the Wisconsin instruments during the same interval giving a combined x-ray

coverage from 0.25 keV to the maximum detectable energy of our instrument.
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I I

0S0-8 HIGH-ENERGYX-RAY
DETECTORBACKGROUNDSPECTRUM

LAUNCHDATE1975 JUNE21

1975 AUGUST 2

975 JUNE 27

1975 JULY 26

SPECTRUM
PULSAR ONLY

McBreen et. al.
(1973)

10-5
10

RAB (TAU X-l)
TOTAL SPECTRUM

Laros et.al.

(1973)

100 1000
ENERGY IN keV

Figure 4. X-ray detector background spectra corrected £or detector
efficiency measured at different times after launch. The Crab

spectra (total and pulsed) are also included for comparison.
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ULTRAVIOLETOBSERVATIONSFROMIUE

A. K. DUPREE

Center for Astrophysics, Harvar_ CQ_l_ge.Observatqry
and Suithsenian Astr0physicaI 6_a_ory

The launch of the International Ultraviolet Explorer (IUE)
Satellite in 1977 will allow the first ultraviolet spectroscopy of X-ray

sources. The 45-cm aperture telescope will have two echelle spectrographs
coverin8 the wsvelength region AA 1135 - 3255 _ with both high and low

difpersien. The hish dispersion format gives a resolving power A/AA of
10 q to 1.5 x 10 q ; the low dispersion format has a resolution of - 6 _.

I.U.L will he operated under a Guest Observer program which includes both
U. S. and European astronomers.

Some scientific goals of ultraviolet observations wtll be
outlined; the cooperative monitoring program will be described.
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OBSERVATIONALPROCRANS

Discussion

A. Bunnerto R. Thomas:

X vouXd Just like to say a fevvords concerning the capabilities of the
Wisconsin Soft X-Ray experiment on OSO-8 to add to the information pet on
X-ray Binaries. This experiment covers the spectrum from 0.X3 keV to about
50 keV with X6 enerKy chanpels, Includlns 6 chanmels beXou 1.5 keV. So
we are Xooklns forward, bhen our data tapes flnally besin to arrive, to
testing spectrsX models in the soft X-ray resion for the source mechanism

and temperature and for [Ine-of-slsht absorption such as mtsht heXp settle
the question of the distance to Nova Nonocerotls, for example, or the
question of how low the Cen X-3 cut-off energy Sets.
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CLOSING WORDS

Yoji Kondo
NASA Johnson Space Center
Houston, Texas 77058, U.S.A.

The symposium was attended by some 150 participants including X-ray experi-
n_nters, ground-based optical and radio observers, theorists and satellite
ultraviolet experimenters. During these three days, numerous recent re-
sults were presented and interesting and sometimes heated discussions were
exchanged. We feel that the original objectives of the workshop were
satisfactorily fulfilled; that is to say, the meeting provided an arena
for exchange of information and an opportunity for the workers from dif-
ferent disciplines and/or from different corners of the world to become
acquainted with each other.

The very popularity of the meeting, which resulted in a rather crowded
schedule for each session, necessitated limitations on the length of dis-
cussions following each paper. This is not very uncommon, of course, and,
hopefully, the summaries given by the chairman after each session have
partially compensated for it.

Regarding coordinated (simultaneous) observations of X-ray binaries, it
seems to me a more practical and realistic idea to designate an individual
to manage a campaign on a specific object. (There have been some prece-
dents, e,_., the campaign to observe Cyg X-3 organized by Dr. Hjellming
last year). Such an individual would of course be better acquainted with
specific problems involved and know what sort of observations are criti-
cal. Dr. Hjellming indicated an interest in Cyg X-3; similarly, Dr. Bolton
has an interest in Cyg X-l.

In closing, I wish to express my personal appreciation to those who par-
ticipated in the symposium and made it such a stimulating and rewarding
experience. I should also like to acknowledge, in behalf of all the par-
ticipants, our gratitude to Dr. E. Boldt who gave a great deal of himself
to make this conference such a resounding success.

18 November 1975.
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